ETS| TS 103 523-2 V1.2.1 (2022-03)

S e—
TECHNICAL SPECIFICATION

CYBER;
Middlebox Security Protocol;
Part 2. Transport layer MSP, profile for fine
grained access control

2 ETSI TS 103 523-2 V1.2.1 (2022-03)

Reference
RTS/CYBER-0072

Keywords
cyber security

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fithess
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fithess for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022.
All rights reserved.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI TS 103 523-2 V1.2.1 (2022-03)

Contents

INtellectual Property RIGNES.... ..ot b e e e en e ns 7
01 Yo (o ST 7
MoOdal VErDS TEMINOIOQYccteieeiicieee ettt st e e s te s ae e aesbeeaeesbesreentesaeeasessesneensesreeneensessens 7
EXECULIVE SUMIMAIY ..ot cteete sttt sttt e st st e e s te e e s besae e teeaeeseesteaaeesbesaeentesseenseteesseseeabeeneenteseeensensesneansesnennns 7
1100 [Tox A o] o S 8
1 o0 0L SR 9
2 REFEIBINCES ...ttt ettt a b bt s e et et e s e et e Rt e bt e b e s b et et e e et et enenbeebenrens 9
21 NOIMBLTVE FEFEIEICES ...ttt b Rt r et r e et r e s 9
22 INFOIMELIVE FEFEIENCES.ceeitieceiitee et r et e et r e n e nenr s 10
3 Definition of terms, symbols and abbreviations............ccoveeciiieiineeeee e 11
31 LIS LSO PP PP PPPTOPPTPPRTRPRTN 11
3.2 SYIMDOIS. ..ottt ettt b e et b e et b e s e Rt bt s e e Rt b e e e R AR e AR e Rt SRR Rt R e Rt b e Rt b et b e n e 12
33 F Y o] 1= V7= 0] S 13
4 Y S s 1= ol T 4o TS 14
4.1 g1 T 18 Tot [l TSP 14
4.2 QI ST = oo o o] (oo SR 15
421 OVEIVIEW ..ttt ettt sttt be s e et e bese e st et e st e se et e s e em e eb e s e emeeb e s b e st ebenEen e e b e sE et e b e sb e e et e sbe e ebesbeneebenbenenrens 15
4211 LT 07 SO 15
4212 Records, CONtAINErS ANO CONTEXEScc.vieireieiieireeeee e st e et e steeete e st e e eaeesbeeesesssbesesessasesensesesesensenenes 15
4213 Record and container construction and ProCeSSING OVENVIEWc.coveereriereeerieneeresieseesesieseesesseseenens 15
4.2.2 Message unit and record processing: cryptographic state and Synchronization............ccccceveeeenenenenienenn 17
4221 LT 07 SRR 17
42211 Session and cryptographic state identifiCationoeoiiriinii s 17
42212 TLMSP S2SSION MUITTPIEXING ..eenveieieiie et e et e e s e sseesra e e e aeeneeeneeanes 18
4222 IVIALC OVEIVIBW ...ttt sttt sttt sttt sttt e s e bt e be s e eb e e ke seeseebesee st ebese et e seeneebeseeneebesbeneenens 19
42221 LC TS g1 - SR 19
42222 MAC aUthOr deterMINGLION.civeeererree e n e nn e 20
4223 SEOUENCE NUIMDIEIS..... e ieeiie ettt e e te e st esaeesaeeteestesseeasaesteeseeseeneesseesneesseenseanseensennenssensnnns 21
42231 LC TS g1 - SR 21
42232 Outgoing MeSSage UNitS @NG FECOTASuveueruirteiriirieieesie ettt sttt besn e e 23
42233 INcoming MeSSage UNitS NG FECOTTS.......cueiuiieueriereeierte et ste sttt sttt b e st sbe s be s e b e neenen 24
4.2.3 Processing of Specific MESSAgE UNIT EYPESo.ccuiiiiieirieee e bbb 24
4231 CONLAINET MESSAJE UNITS. .. .ecuerteeeieeterteseete sttt sttt st et st e st b e st sb e ssese e bt ss e e ebeseeaeeb e s ese s b e b e e ebenneneenis 24
42311 CONLBINEY USAEc.veueeteteteueetesteseete st ese st es b e st b e b e st s b e b e s e b e b et e bt b e e e bt e b e e e bt e b e e e st ebe s e st nbe b e e e 24
42312 Koo [o= 10 g 1S3 25
42313 INSEIIONS GENEIAIY ..o et e s ae et e et e et e e s e saeesre e beeteeteenaesneennes 25
42314 Deletion iNdiCation CONTAINETS..........cceiiieeirie et r e n e nne e 26
42315 AUGIT CONTAINEIS......eeeirereeeere ettt r e e r e e seer e se e er e se e e er e nre e eresnesnenenreneenens 27
42316 ATEIT CONTBINEYS ...ttt r e r e st e et r e s e e e r e nr e e renne e rennenneneas 28
4232 RECOI MESSAGE UNITS.....ecvieiieieeiesie s see st sttt et e st e st e st e e te e teeteentessaesaeesneesseeseenseensennaesnenssnessnns 28
42321 HaNdShake MESSA0E UNITS.......cecuiiiiieiiitieetert ettt eb e bbb nn e ens 28
42322 ChangeCipherSPeC MESSAgE UNITS.......ccuceiirieeriirie ettt st b e 28
4.2.3.3 Middl€DOX ProCESSING SUMMEIYcoveeetirtireeiirtereeieste et se et se e ebesbe e ebesbeseebesbeseesesbeseeseeae e ebesbennenens 28
4234 MAC USBGE SUMIMAIY ...ttt st sttt sr et et bt e s bt ae bt et e e se e e R e s bt ereeae e s e e seeen e resreerenanennenneas 29
424 (@012 111 0] 00 PSR 31
425 T (SR = o (0 I (o 17 U PRRSN 31
4.2.6 CompPressed reCOIA FOMMIBL.........eoiiere et e e ae e s e e sreeaeeaseesaeesaesseesseenseenseeneennes 32
4.2.7 Applying message unit and reCord ProteCLiON..........civeiieie et e e snees 32
4271 LC T o1 =TT 32
4272 Y O o = = 1 oo TS 33
42721 LC T g1 - PSS 33
42722 Reader, deleter and WIHLEr MACS ... 33
4.2.7.2.3 HOP-DY-NOP MAC ... e et b e et ebesaeneene 35

ETSI

4 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.2.7.3 CIPNEY SUITE SPECITICS ...ttt e et b et b b na s 36
42731 (T 0T USSR 36
4.2.732 INUIT OF SEFEAIM CIPNEY ...ttt bbb b e a bbb eb et enis 36
4.2.7.3.3 GENENTC DIOCK CIPNET.......ceitieete bbbt bbb r e 36
4.2.73.4 ABAD CIPRNENS ..ottt bbbt b e a et be b e ene s 37
4.3 The Handshake ProtOCOL...........cee et sttt ettt et et e e etesaeesseesaeesseenseenteeneeeneenneesreas 37
431 OVEBIVIBI ..ttt e bt h ettt s et bt bt e b e e s e e s e b e SH £ eE e 4R eh £ e e e e e e b e 1E £ eb e e Rt eh e e e et e besbeebesaeensennenras 37
4311 GBNETEL ...ttt b bbb R e R e bR SR e e et e e e R e e R e Re R e benheeb e e e entennens 37
4312 Piggy-backing of handshake MESSAgESccciverii et nrees 40
432 Middlebox configuration, ISCOVENYuciieiieriieieeieseesee st e se e e e e s e e teeteenaessaesraesreenseetesneesnnesnes 41
4321 LT 07 | OO RPRRUSR 41
4322 SEALiC PrE-CONFIGUIBLION.eeeeiitereeieete sttt b ettt b et b s bbb ebenn e 42
4323 DYNAIMIC GISCOVEIY ...ttt sttt st sttt st b e et b e s et eb e s e et b e s b et ebesbe e ebesbe e ebesbe e ebenbenneneas 42
43231 (T 0T USSR 42
43232 Non-transparent MiddIEDOXES..........coiriiiiiieeer bbb 43
43233 Transparent MiAAIEDOXES.coveiiirieere ettt b ettt b e et b e et b 44
4324 COMDINEA QISCOVEIYccteeie e cie ettt e e e ste s ae et e esae s s e ese e te e teeteentesneesneesseenseanseensenneesrensnens 45
43241 EXAMIPIE USE CBSE.....ccueeetietieieee et s ettt e et e e e et esaeesaeesaeesaeenteeneeeneassannseeseeteensenneennns 45
4.3.24.2 PractiCal CONSIAEIALIONS........coueieieteeieeieeee ettt et b bbb se et b sre b e saeene e e e e s 46
4325 Middlebox 1€ave and SUSPENGcccueiieiee ettt e s e e s neesaeeneeesaesraesnaesreesrens 46
4.3.3 Session resumption and reNEQOLIALIONccvecveeicieeeese e et e esra e reeteenesneeenes 46
4331 L2 1 01011 o) o U 46
4332 RENEJOLTBLION ...ttt ettt b et b e e st b e e st b se et b e e ekt s b e e ebesbeneebeebenneneas 47
434 HaNAShaKE MESSAOE TYPES.......ecveieeieite ettt ettt ettt b e et b e bt bbbt b e b et b e b et b b 47
435 TLMSP Handshake EXEENSIONS........cc.oiiieiieieeeeiee ettt see e et ese e e eseesteseesaesneeneeneeneenes 48
4.3.6 MiddIEDOX relaleO MESSAGES.coveeeierieeete ettt sttt b bbbt b e et st b et b b 52
436.1 17170 =1 o 1TSS 52
436.2 0 T0 = 4) o= = SRS 53
4.3.6.3 MBOXCErtifICALEREUESEc.eeeieeeee ettt te e e e s e re et e e eeenaesnaeenaesneeseens 53
4.3.64 CartifICAIEZ2IMIION ...ttt bbbttt e e e b aeeb e nne 53
4.3.6.5 000 =Y (o T TS 54
4.3.6.6 MBDOXHEITODONE.cceeeeeiee ettt bbb bbbt e ae e st e s e e e et e besbeeb e e e enneneen 54
4.3.6.7 CertifiCAEV EITTY2IMDOX ...ttt sttt et et et et e e teente s e e sneesaeeneeensesnsennaesseesnens 54
4.3.6.8 SEIVEIUNSUDIOIT ...ttt sttt s r s bt r et e e e r e e b e s Rt e E e et ea e e e e ne e e sr e e resneer e e e enneneeas 55
43.6.9 NEWMBDOXSESSIONTICKEL ... ettt ettt st sae st e e seesbesbeseesbeeneeneeneens 55
4.3.6.10 IMBOXFINISNEA ...ttt sttt a et e e st e s be s eeeaeese et eneeneeneesbeseesseeneeneeseens 55
4.3.7 TLMSPKeyMaterial and TLMSPKEYCONTc..ooiiriiiiiierierieses et 56
43.7.1 KeyMaterial CONEITOULTIONc.ccuiiiieeiiite ettt ettt b et s a e eb b nnene 56
4.3.7.2 TLIMSPKEYIMALEITAL ...ttt sttt te e s e e eneeseeseesbeseeebeeneeneeneeneas 57
4.3.7.3 TLIMSPKEYCONT ...ttt e b bt h et e e bt bt e he bt et e e se e eb e besbeebeeaeene e e ennas 58
4.3.8 MboxLeaveNotify and MBDOXLEAVEACKocei et sae e e 59
4381 Y SS20 Tc N 0 7= | SR 59
4382 M ESSAGE PIrOCESSINQ. ...eeveeutreuteeeteesteseeeseesteesteesseesteaseesseasseaseessaesseesseesseaaseenssanseasesaseesseenseansenssessenssenssnes 59
43821 GBNETEL ...t h e bR bR R a £ et et e tenE e b eheehe e e nennen 59
43822 (D= 1= o o o 1= (o] o 1 60
4.3.9 IMESSAGE NASNES.ttt et b et b e et b e e st b e et b et b e et b bt b b 61
4391 ClientHello and ServerHello value SUDSLITULIONScoueieeieeesiese e 61
4392 LT 1= o [7= S o TSRS 62
4393 MDBOXFINISHEA NASH ...t et ae e e e e 63
4394 ClientHello hash (following dynamicC diSCOVENY)........cierriririririeeeiesieesie et 64
4.3.95 TLM SPServerKeyEXChange haSh..........coiciiiierie bbb 64
4.3.10 L 0 =0T = 1 o P 65
4.3.10.1 TLM SPSErVErKEYEXCNANGE......cveiie ettt sttt et e e tesaaesnaesreeteenaesnaennes 65
4.3.10.2 GBNETEL ...ttt bbbt E R Rt R R e R e e R e R e EeeRe R e Rt R e e Rt e a e be R e be Rt ehe e e nnennens 66
4.3.10.3 Premaster secret and master SECret geNErationocveceecerierie e seesteesee e e e ae e e reeseees 66
4.3.104 Pairwise encryption and integrity KeY generalionccccceeeerieesiesesie s seeseeseeste e eee e sseesreeseees 67
4.3.10.5 CONEEXE SPECITIC KEYS ...ttt b bbb bbbt b e bt st b b b e nn e 68
4.3.10.6 KIBY EXETACTION ...ttt b bbb b e b e eb e se bt b et eb e s b e e eb e nbeneebeebennene s 70
4.4 THE ALEIT PrOLOCO ... ettt b e b et e et b e et b e s e et eb e s e et ekt s b e e eb e sb e e eb e sb e e ebesbennenens 71
44.1 (€71 PR 71
4.4.2 ALEIT IMESSAGE LYPIES ...ttt ettt e bbbt bbbt b st b e e h b b e st e b e b e s e e st e b e b e st b e bt b b 71
4.5 The ChangeCipherSPEC PrOtOCOLceiueuietirieeete ettt ettt b et b e ettt s e et b e e e b e sbe e ebesreneeneas 72

ETSI

5 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex A (normative): Defined CIPhEr SUITES........ccveiiiiiece et 73
E N A €= 0 1< - SRS 73
A2 KBY EXCRANGE ...ttt b bt et bt e e et h bR Rt et h bR e n e 73
A.3 AES {128,256} GCM_SHA{ 256,384}ooiieeeeiitieierieeeese e eeestesteeeesseseeseesseensestesseessesseeneessesnens 73
A31 LT 0T PRSP 73
A3.2 Additional MAC COMPULBLIONSueeetirteeetirteeete sttt se et ss et ss s ss e s sb s s e sb e s ebesb e s ese s b e s e e eneseeneens 74
A4 AES {128,256} CBC_SHA{ 256,384}coeeririiriinierieieeieiese sttt st st ss et st sae s 74
A5 AES {128,256} CTR_SHA{ 256,384}cccoiiieeeieeieeiesie e sie e ee st st et e st stesneenaesreeneentesne e 75
A6 AdAItIONal CIPNEN SUITES......ceieiieiei ettt e e et b bt sb e en e e e e e e s e nbeane e 75
A7 SUMMAry Of SECUNLY PAIraMELEIS......ccceiiiiie e eteeie e ete sttt et ste e e te st e e e e besaeesresbeetesteensesrebesreensenneens 75
A8 CIPNEr SUITE IOENTITIENS ...ttt b bbbt b b n e e e e 75
ALD FULUINE EXEENSIONS......cueiiieeiesieeeeeie st ettt e eesteseeesteseeeseesbesaeeseesseeaesteemsesseaseensesaeeneesseensenseseeeneesesseensensens 76
Annex B (normative): Alternative CIPhEr SUITES..........coviiiiieee s 78
2 B R = o T o PSSR 78
B.2 Defined alternative CIPNEr SUITES.........ccvicieieiiccie sttt st st sa e st e b s ae e e besreennesneens 78
B.2.1 N 1o TSR URUPR SRR 78
B.2.2 L= =00 Y SR 78
B.2.2.1 LT 0 - | 78
B.2.2.2 TECNNICA DELAIIS ...ttt s e bbbt e it et e e e sb et sheeb e st ens e e ennas 79
B.2221 ClientHE 10 @and SErVEIHEI Oooueeeeeeee ettt sae e eneeneen 79
B.222.2 MBOXKEYEXCNANGE. ...ttt et b e et b et b e et b e et b b 79
B.2.2.2.3 TLIMSPKEYIMALEITALcveeeeeeeeeee ettt e st te e et e e e e s e e e e neesbesreebeeneeneeneeneas 79
B.2.3 L] SRR 79
B.23.1 (€71 SO RSR 79
B.2.3.2 QL= g T0r= I L= T SRS 79
B.2.3.2.1 LT 07 TS SS 79
B.2.3.2.2 (@1 1= 1 1= 1 o USSR 80
B.2.3.2.3 00y =Y o Vo TS 80
B.2.3.24 I S =YY = = | 80
Annex C (normative): TLMSP alterNative MOGEScc.eeveiieiieiie ettt 81
LT = o= ot S (0T 00T 0SSNSO 81
C.2 FallDaCK tO TLM SP-PIOXYING ..cveiuiterieeeieeeieeiessesseste st sse s ss s ese s sse st ssesne s eseeseeseeseaneseesnesneneenes 82
c21 LT 0T OSSR 82
C22 FaAlTDBCK PIOCEAUNE ..ottt bbbt b bbb bt bbb e et b et eb e et 82
c.23 Message and ProCeSSING AELAIIS.c.civiieiiiieir bbbt 85
c231 TLMSP proxying and delegate extension and message SPeCifiCations.........cccovevveceviceeseesecse e 85
c.232 Delegate Message SPECITICALIONccuvcci et et e st e e e te e teeteeneeneeenes 85
Cc233 (0700 oo RS 85
C.3 Middiebox security poliCy ENfOrCEMENTcceeiiieeesiee ettt enaesre e e neennean 86
C31 LT 0T OSSP 86
C3.2 IMIESSAGE FOMMIBES. ... vttt bbb bbb ekt b et b bbb bbb e et b et eb e e 87
Annex D (informative): Contextsand application layer iNnteraction...........ccoceuererereeieeienieseneneneens 88
D.1 Application layer interaCtion MOOEcooeeiiieiere et neesreeneens 88
D.2 EXQMPIE CONEXE USAQE.uiiueeriirieiesieeueestesteetesteeseestesaeestesteetessesseestesasessesseensestesssessesaseseessesnesnsessesneens 88
Annex E (informative): SECUNitY CONSIAEN ALIONS.....ccviiuieieciecee ettt r et sre e 90
O 8 (01 o 070 (= PSSR 90
E.2 CryptographiC PrIMITIVES.......ceoeieeeieseeeeseseeie st see e e steste e tesseestesaeeeesteeneessesseensesseeneeseesneensesseeneens 91

ETSI

6 ETSI TS 103 523-2 V1.2.1 (2022-03)

E21 LT 0T SO 91
E.2.2 HaNAShaKe VEXTTICAHON.......co.iiuiieeeeee ettt sttt ettt e e e teseeebesneene e e eneees 93
E.3 Protection againSt MCTLS ataCKS.......cciiuieii ittt e ne e 93
B4 INEr-SESSION BSSUIAICE. ... eeutereeeueesteeueesiesseeseesteansessesseessesseessesseensesseeseessesseensesseesessesnsessessesnsensenseensessenns 94
E5 Useof the default CONTEXE ZEIO.........coiieeeieeesee ettt st e e e seesneenaesreeneens 94
E.6 Removal of MiddIehoX INSEITIONS.........couiiiiiiiiiisieseeeees st sne e 95
E.7 Removal of support fOr reNEgOLIGtioNcceceeciiiieiiii et st ne e ne e 95
Annex F (informative): TLMSP design rationalec.coeeeeiiieciiecececse e 96
N R €= 1= | PSSR 96
A O g1 = 1 PSRRI 96
F.3 Sequence numbers and re-ordering/del etion attacks...........ccoceeceieceeci e 96
F.4 MAC for Synchronization PUMPOSEScceeiuiiieeiieiieieesteeeestestees e steetestesaesresseesbesteessesseensestesnsensessesnnens 97
F.5 Removal of SuUpport fOr renNegOLIaLiONccceoveiririiisiesiese e 97
Annex G (informative): Mapping M SP desired capabilitieSto TLM SP........cccooevviieve v 98
L R €7 0 - ST 98
G.2 MSP Requirements - Data PrOtECHIONcceciiiiiieie ettt et re s nrenre s 99
G.3 MSP ReQUIrEMENES - TIANSPAIENCYeecueeiviereeitesrieeesteeeesresseestesseeaessesseessesseessessessessessesssessesssessessenns 100
G.4 MSP Requirements - ACCESS CONIOLcueiieiiieiriirie sttt b 103
G.5 MSP Requirements - GOOU CItIZEN.......ccueiiririeiirieiiesie sttt st be e sne e 105
Annex H (infor mative): TLMSP COMPIESSION ISSUES......ccuviuiriiriiatesiesseseeeesiessesse e ssessesseseesesessessens 107
Annex | (informative): [ANA CONSIAEN ALIONS.......ceeieiieieeieeieeie sttt 108
Annex J: (O T o =N o T o SRR 109
[T (PO P PSP 110

ETSI

7 ETSI TS 103 523-2 V1.2.1 (2022-03)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI Web server (https:/ipr.etsi.org/).

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM 2M ™ |ogo is atrademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM ® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Cyber Security (CY BER).

The present document is part 2 of a multi-part deliverable. Full details of the entire series can be found in part 1 [i.5].

Modal verbs terminology

In the present document "shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary

Requirements exist for network operators, service providers, users, enterprises, and small businesses, to be able to grant
varied (fine grained) permissions and to enable visibility of middleboxes, where the middieboxesin turn gain
observability of the content and metadata of encrypted sessions. Various cyber defence techniques motivate these
requirements. At present, the solutions used often break security mechanisms and/or ignore the desire for explicit
authorization by the endpoints. Man-In-The-Middle (MITM) proxies frequently used by enterprises prevent the use of
certificate pinning and EV (Extended Validation) certificates. Where no such mechanisms exist, some encryption
protocols can even be blocked altogether at the enterprise gateway, forcing users to revert to insecure protocols. As
more datagram network traffic is encrypted, the problems for cyber defence will grow (IETF RFC 8404 [i.4]).

The present document is one of a series of implementation profiles to achieve these visibility and observability goals,
putting the user in control of the access to their data for cyber defence purposes and protecting against unauthorized
access. It sets forth a " Transport layer MSP (TLMSP), profile for fine grained access control” that meets the capability
requirements found in Middlebox Security Protocol MSP Part 1 (ETSI TS 103 523-1 [i.5]).

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

8 ETSI TS 103 523-2 V1.2.1 (2022-03)

Authorized middleboxes rarely need full read and write access to both the headers and full content of both directions of
a communication session to perform their function. TLMSP provides means for classification of the communication
between the endpointsinto different so-called "contexts', each of which can have different read, delete, and write
permissions associated with it, following the security principle of least privilege. This subdivision is for the application
to determine and is under endpoint control.

TLMSP is modelled similarly to the TLS protocol (IETF RFC 5246 [1]) and composed of the TLM SP Record Protocol
for the encapsulation of data from higher level protocols, and the TLM SP Handshake Protocol for the agreement of
keys and the authentication of all parties with access to the communication prior to the sending of any application data.
Alert and ChangeCipherSpec Protocols are also provided with similar functionalities astheir TLS counterparts. These
protocols: satisfy the same basic properties described in IETF RFC 5246 [1], they give visibility and control of the
security of the entire communication pathway to the endpoints, and they allow the principle of least privilege to be
enforced.

TLMSP isderived from mcTLS[i.1] with added features that include; additional metadata fields that allow
middleboxes to perform not only read and modification operations, but also auditable insertions (of new data,
originating at the middlebox) and deletions; a more flexible message format, allowing adaptation to varying network
conditions; on-path middlebox discovery; improved sequence number handling; fallback to TLS; and additional security
measures against recently discovered security vulnerabilities. Three normative annexes are included that contain
defined cipher suites, TLS fallback mechanisms, and authentication extensions.

Introduction

There are many uses of middlebox technol ogies. Some examples are: providing a better user experience (content
caching to reduce latency, network prefetching of content); providing user protection and cyber defence (firewalls,
intrusion and malware detection, child protection); providing business protection (data loss prevention and audit).

These middlebox systems rarely reguire both read and write accessto all communication content to function, though
current security protocols necessitate an all-or-nothing approach, forcing to break the security assurances that
underlying encrypted protocols are intended to provide.

EXAMPLE: Man-In-The-Middle proxies used for gateway defence do not provide any assurance of the final
endpoint identity, breaking certificate pinning and violating PKI trust models. They also fail to
provide assurance that the connection beyond the gateway to the endpoint is even encrypted.

On most non-enterprise networks, users generally desire control of their own data - to choose whether to grant access or
not to another party. Users wishing to protect themselves from malicious software on their own systems stealing their
data (or including software that harvests user data without user consent) are not currently well-positioned to insist that
datais forwarded through their own cyber-defence systems or to grant access to the content. Any system that prevents
this can be used as a means of stealing the user data, which isa privacy failure.

To avoid these issues, users need to layer their security architecture and not be forced to rely on endpoint defence alone,
as there will be some platforms where thisis not optimal, hard, or even impossible. The best defence is always expected
to be alayered approach and not reliant on a single mechanism at a single location/layer. Thisis expected to be
particularly true for those low power 10T devices that lack capability of running endpoint protection, where endpoint
protection does not even exist, and where patches are slow or non-existent. Unpatched devices can be protected from
vulnerabilities only by preventing malicious payloads reaching the |oT device at all; thisis areguirement that can only
be satisfied by network-based defence.

However, for privacy reasons, network defence ought not to require disabling of data encryption, and maintaining end-
to-end encrypted datais a requirement. In the present document, a protocol profileis defined to alow endpointsin a
session to authenticate, create an end-to-end encrypted session, and then authorize additional parties to access portions
of the encrypted traffic. This profile provides full visibility of all additional middlieboxes and their permissions to both
parties prior to the sending of any application layer traffic. Additionally, no middleboxes can be added or have
permissions granted by this protocol without the both endpoints agreeing to both their presence and their permission
level. These requirements assure the fundamental principle that the endpoints are in control of their own data and who
can have accessto it.

ETSI

9 ETSI TS 103 523-2 V1.2.1 (2022-03)

1 Scope

The present document specifies a protocol to enable secure transparent communication sessions between network
endpoints with one or more middleboxes between these endpoints, using data encryption and integrity protection, as
well as authentication of the identity of the endpoints and the identity of any middlebox present. This protocol can be
mapped to the abstract M SP protocol capability requirementsin ETSI TS 103 523-1 [i.5].

The Middlebox Security Protocol buildson TLS 1.2 [1] and is an extensively modified version of the mcTLS protocol
[i.1]. Whilst basic concepts are inherited from the mcTLS variant, the protocol specified in the present document aso
contains significant additional functionality and feature changes that would render it incompatible with the original
version published.

The present document focuses on TLM SP usage with TCP as it isthe most common usage. Usages with other transport
protocols are possible but left out of scope. In the remainder of the present document, unless otherwise noted, the word
TLSrefersto TLS 1.2 [1].

The present document defines a set of five sub-protocols for specific purposes: Handshake (authenticating endpoints
and middleboxes and negotiating cryptographic configuration among those entities); Alert (signalling errors and
notifications); Application (carrying data generated by higher layers); ChangeCipherSpec (signalling the activation of
the negotiated cryptographic configuration) and a Record protocol, (responsible for applying the activated security
configuration to all of the other aforementioned sub-protocols).

Since TLMSP is a generic protocol, usable with a wide range of applications, issues related to mapping of
application-specific security policy to explicit configurations of TLMSP islargely left out of scope. Further,

out-of-band provisioning aspects relating to policies, pre-configuration of the client, details on actionsin error situations
are aso out of scope. While some informal discussion on the security properties of TLMSP is provided, a complete
(formal) security analysis of the protocol is currently left out of scope.

A reference implementation of TLMSP is being devel oped and can be accessed at [i.7].

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

[2] IETF RFC 5077: "Transport Layer Security (TLS) Session Resumption without Server-side State”.

[3] IETF RFC 5116: "An Interface and Algorithms for Authenticated Encryption”.

4] Void.

[5] IETF RFC 7748: "Elliptic Curves for Security".

[6] IETF RFC 7919: "Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport
Layer Security (TLS)".

[7] IETF RFC 8449: "Record Size Limit Extension for TLS".

ETSI

https://docbox.etsi.org/Reference/

(8]
[9]
[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

2.2

10 ETSI TS 103 523-2 V1.2.1 (2022-03)

IETF RFC 5288: "AES Galois Counter Mode (GCM) Cipher Suitesfor TLS".
NIST FIPS PUB 186-4: "Digital Signature Standard (DSS)".

NIST SP 800-38D: "Recommendation for Block Cipher Modes of Operation: Gal ois/Counter
Mode (GCM) and GMAC".

ETSI TS 133 220: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); LTE; Generic Authentication Architecture (GAA); Generic
Bootstrapping Architecture (GBA)".

IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax”.

IETF RFC 1983: "Internet Users Glossary".

IETF RFC 1123: "Requirements for Internet Hosts -- Application and Support”.
IETF RFC 793: "Transmission Control Protocol”.

IETF RFC 791: "Internet Protocol".

IETF RFC 8200: "Internet Protocol, Version 6 (IPv6) Specification".

IEEE™ 802-2014: "IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture".

IETF RFC 5289: "TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter
Mode (GCM)".

Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE:

While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1]

NOTE:

[i.2]

NOTE:

[i.3]

[i.4]
[i.5]

[i.6]

[i.7]

NOTE:

D. Naylor et al.: "Multi-Context TLS (mcTLS): Enabling Secure In-Network Functionality in
TLS', SSIGCOMM '15, August 17 - 21, 2015, London, United Kingdom.

http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p199.pdf.

D. Naylor: "Architectural Support for Managing Privacy Tradeoffsin the Internet”, Carnegie
Mellon University, August 2017, PhD Thesis.

http://reports-archive.adm.cs.cmu.edu/anon/2017/CMU-CS-17-116.pdf.

K. Bhargavan et al.: "A Formal Treatment of Accountable Proxying over TLS"', IEEE™
Symposium on Security and Privacy (SP) (2018), May 20 - 24, San Francisco, United States.

IETF RFC 8404: "Effects of Pervasive Encryption on Operators'.

ETSI TS 103 523-1: "CYBER; Middlebox Security Protocol; Part 1: MSP Framework and
Template Requirements”.

D. McGrew, D. Wing, Y. Nir, and P. Gladstone: "TLS Proxy Server Extension”, draft-mcgrew-tls-
proxy-server-01, IETF.

"TLMSP reference implementation”.

Availlable at https://forge.etsi.org/rep/cyber.

ETSI

http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p199.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2017/CMU-CS-17-116.pdf
https://forge.etsi.org/rep/cyber

11 ETSI TS 103 523-2 V1.2.1 (2022-03)

[1.8] IETF RFC 8446: "The Transport Layer Security (TLS) Protocol Version 1.3".

[i.9] IETF RFC 8447: "IANA Registry Updates for TLS and DTLS".
3 Definition of terms, symbols and abbreviations
3.1 Terms

For the purposes of the present document, the following terms apply:

1-sided authorization: middliebox traffic observability enabled unilaterally by one endpoint such that the other
endpoint is not able to reject or negotiate the traffic observability, other than by ceasing the communication

NOTE: See[i.5].

2-sided authorization: middlebox traffic observability enabled only when both endpoints agree to it
NOTE: Seel[i.5].

(access) privilege level: per context access rights given to an entity, amongst the four possible options:
. "none" meaning nNo access rights,
e "read" meaning read accessrights only;
. "delete” meaning read and delete access rights only; and
. "write" meaning full access rights - the ability to read, delete, and write (including modify).

NOTE: These access privilege levels are mutually exclusive and each middliebox will have precisely one of the
above privilege levels per context.

deleter: for agiven context, entity having delete access privilege level with respect to that context

deleter author: for agiven context, entity with at least delete access privilege that was the most recent entity to process
and forward the message

NOTE 1: Deleter author is considered undefined for contexts when there does not exist any middlebox with
explicitly granted delete access.

NOTE 2: TLM SP messages corresponding to context zero never has a deleter author since this context never has
explicitly granted delete access.

downstream entity: when sending a TLM SP message in a certain direction, any entity located topologically, relative to
the sender, in the direction of the sent message, including the enpoint in that direction

fragment: Service Data Unit (SDU), delivered from one of the higher level TLM SP protocols (Application, Alert,
ChangeCipherSpec or Handshake) to the TLM SP Record protocol for protection

(message) author: entity (endpoint or middlebox) making the most recent modification to a message or part thereof

NOTE 1: In TLMSP, there can be up to three distinct authors of a given message. The term author in itself refersto
the author of the (possibly encrypted) payload. The other types of authors are the "deleter author" and
"writer author", see adjacent definitions. The author, deleter author, and writer author can all be the same
entity, or, can al be separate, distinct entities.

NOTE 2: Madification above includes re-encrypting a message using new security parameters of the author, even if
the content of the message is unchanged.

ETSI

12 ETSI TS 103 523-2 V1.2.1 (2022-03)
(message) originator: entity (endpoint or middlebox) where a new message was first generated and forwarded toward
the destination endpoint
NOTE 1. The message originator isinvariant. The message author can change as the message is being forwarded.

NOTE 2: The originator and author are only guaranteed to be the same entity at the moment when the message is
transmitted by the originator.

reader: for agiven context, entity having at least read access privilege level with respect to that context
(TLM SP) context: part of the fragments governed by specific, application dependent access policy

NOTE 1: Here, "part" can refer to a header, a payload, a specific implicitly or explicitly "tagged" part of the
payload, or other section of the communication. A special context is defined for non-application data such
as handshake and control messages.

NOTE 2: Theorigina mcTLS specification uses the term "dlice" instead of "context”.

NOTE 3: A context has associated cryptographic keys, made available to those entities that are allowed certain
access ("read” and possibly "delete” or "write") to the corresponding context.

(TLM SP) container: order-preserving sub-division of fragments belonging to the Application or Alert protocol, where
each sub-division is associated with a specific context or part thereof

(TLM SP) entity: client, server or middlebox engaged in a TLM SP session or the negotiation of such session

(TLM SP) record: Packet Data Unit (PDU) resulting from applying TLM SP security processing directly, either to an
entire fragment or to one or more containers, while preserving the inter-container ordering

NOTE: Therecord isdelivered as SDU to lower layer (typically TCP).

upstream entity: when receiving a TLM SP message, any entity located topologically, relative to the receiver, in the
direction from which the message is received, including the endpoint in that direction

writer: for agiven context, entity having write access privilege level with respect to that context

writer author: for agiven context, entity with write access privilege that was the most recent entity to process and
forward the message

NOTE: A writer author is aways defined and is considered to be the endpoint if no middlebox with write access
exists for the given context.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

Al B concatenation of binary strings A and B

b" n-bit string consisting of the binary value b (0 or 1), repeated n times
B-TID GBA-defined B-TID vaue (obtained during GBA bootstrapping, identifies key material)
ctxt_id TLMSP container header context identifier

dm TLMSP container deleter MAC field

flags TLMSP container header flag field

f ragnment TLMSP record/container payload field

hbh_i d TLMSP record header hop-by-hop indentity field

hm TLMSP record hop-by-hop MAC field

Ks NAF GBA-defined Network Application Function Key

| engt h TLMSP container header length field

m i nfo TLMSP container header middlebox information field

rm TLMSP fragment reader MAC field

tot | ength TLMSP record header length field

type TLMSP record header message type field

version TLMSP record header version field

wm TLMSP container writer MAC field

ETSI

13

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

3GPP
AAD
AEAD
AES
AES
AES-CBC
AES-GCM
ASCII
BSF
CBC
CTR
DH
DHE_DSS
DK
DM
DNS
DoS
EV
FIPS
GBA
GCM
GMAC
HBH
HMAC
HoplD
HTTP
ID
|IEEE
loT

IP

v
MAC
MC
mcTLS
MH
MITM
MK
MNO
MO
MSP
NAF
NAF-1d
NAI
NAT
NIST
PDU
PKI
PM
PNA
PO
PR
PRF
PSK
RFC
RM
RSA
SDuU

Third Generation Partnership Project
Additional Authenticated Data
Authenticated Encryption Additional Data
Advanced Encryption Standard

Advanced Encryption Standard

Advanced Encryption Standard - Cipher Blocker Chaining
Advanced Encryption Standard - Galois Counter Mode

American Standard Communications Indication
Bootstrapping Server Function

Cipher Block Chaining

Counter (mode)

Diffie-Hellman

Ephemeral Diffie Hellman Digital Signature Standard

Deleter Key

Deleter MAC

Domain Name System

Denial of Service

Extended Validation

Federal Information Processing Standard
Generic Bootstrapping Architecture
Gdois Counter Mode

Galois Message Authentication Code
Hop-by-hop

Hash-based M essage A uthentication Code
Hop Identity

HyperText Transfer Protocol

| dentity

Ingtitute for Electrical and Electronic Engineers
Internet of Things

Internet Protocol

Initialization Vector

Message Authentication Code
Middlebox key Confirmation message
Multi-Context TLS

Middlebox Hello

Man In The Middle

Middlebox Key material message
Mobile Network Operator

M SP Optional

Middlebox Security Protocol

Network Application Function

Network Application Function Identifier
Network Access Identifier

Network Adress Trandation

National Institute of Standards and Technology
Packet Data Unit

Public Key Infrastructure

Profile Mandatory

Profile Not-applicable

Profile Optional

Profile Rejected

Pseudorandom Function

Pre-shared Key

Request for Comments

Reader MAC

Rivest-Shamir-Adleman

Service Data Unit

ETSI

ETSI TS 103 523-2 V1.2.1 (2022-03)

14 ETSI TS 103 523-2 V1.2.1 (2022-03)

SHA Secure Hash Algorithm

SP Special Publication

TCAL TLMSP Context Adaptation Layer
TCP Transmission Control Protocol
TLMSP Transport Layer Middlebox Security Protocol
TLS Transport Layer Security

TLS Transport Layer Security

TS Technical Specification

URI Universal Resource Identifier

USIM Universal Subscriber Identity Module
UTF Unicode Transformation Format

WK Writer Key

WM Writer MAC

4 TLMSP specification

4.1 Introduction

The Transport Layer Middlebox Security Protocol (TLMSP) specified in the present document is derived from the
published mcTLS protocol [i.1] and [i.2]. The objective isto provide data privacy, dataintegrity and authentication
controls of communication similar to that provided by TLS whilst also providing access to the content (with fine
grained access control) to additional authorized and authenticated middleboxes, with visibility of these middleboxes and
endpoint control over the permissions granted to middleboxes. Authorized middieboxes rarely need full read and write
access to all parts of data and/or to both directions of a communication session to perform their function. TLM SP
divides the communication between the endpoints into different contexts, each of which can have different permissions
associated with it, following the security principle of least privilege with regards to read and write access. Thisdivision
of communication is for the application to determine and under endpoint control.

EXAMPLE 1: Application-layer headers and content can be handled as two separate contexts with different
associated permissions to each context, described further in annex D.

The TLMSP protocol model builds on the TLS protocol model with asimilar presentation language [1]. It is composed
mainly of the TLM SP Record Protocol, for the encapsulation of datafrom higher level TLM SP protocols, and the
TLMSP Handshake Protocol, for the agreement of keys and the authentication of al parties with accessto the
communication prior to the sending of any application data. Alert and ChangeCipherSpec Protocols are also provided
with similar functionalities as the TL S counterparts. These protocols satisfy the same basic properties described in the
TLS protocol [1]; additionally allowing visibility and control of the security of the entire communication pathway to the
endpoints and allowing the principle of least privilege to be enforced.

S + oot oot oot S +
| dient | <-->| M| <->| M| <->... <-->] M | <-->]| Server
Fomm e m oo - + F- - -+ F- - -+ F- - -+ Fomm - o - +

Figure 1. The TLMSP network architecture with client, server and middleboxes M1, M2, ...

Unlike the original mcTLS[i.1], the protocol specified here includes:

e additional metadatafieldsto allow middleboxes to perform not only read and modification operations, but also
auditable insertions (of new data, originating at the middlebox) and deletions;

. amore flexible message format, alowing adaptation to varying network conditions;
. on-path middlebox discovery;
. afallback mechanism to standard TLS; and

. improved robustness of sequence number handling and additional security measures against discovered
security vulnerabilitiesin the original mcTLS specification.

ETSI

15 ETSI TS 103 523-2 V1.2.1 (2022-03)

On the topic of TLS-fallback, there could be situations in which a standard TLS client initiatesa TLS connection to a
server supporting both TLS and TLMSP, but where this server, for whatever reason, has a policy to only allow TLMSP
for this particular client. It is out of scope of the present document to specify use-cases for such policies.

EXAMPLE 2: Thepolicy could state that additional 3" party content filtering is necessary.

4.2 The Record protocol

421 Overview

4211 General

Akinto TLS, the Recor d protocol isalayered protocol that fragments data from higher level protocols (e.g.
Handshake protocol, Appl i cat i on protocol), into TLMSP records, applies the agreed data integrity checks and
encryption, and then transmits the resultant records over the transport layer.

EXAMPLE: TCP can be used for transport. Each TLMSP record delivered to TCP is split across several TCP
segments before transmission. Received records (after TCP re-assembly) are decrypted, integrity
verified, decompressed, reassembled and then delivered to the higher protocol levels.

The current version of TLM SP does not define or make use of any (non-trivial) compression method, due to several
foreseen issues as discussed in annex H. Future versions of TLM SP may specify usage of compression.

421.2 Records, containers and contexts

For TLMSP to allow the traffic optimizations it seeks to enable, TLM SP allows data fragments associated with multiple
contexts to be "packaged” into one single TLM SP record and also allows for data associated with a single context to be
split across records. Thus, a TLMSP record comprises protected data corresponding to one or more TLMSP contexts.
Within arecord, a (contiguous) fragment of data associated with a context is called a TLMSP container (or ssmply
container). An explicit container format shall be used for the Al ert and Appl i cat i on protocols, but not for the
Handshake and ChangeCi pher Spec protocols, both of which are associated with a default context called context
zero.

42.1.3 Record and container construction and processing overview
S R S SRR e F~~~~t
| type | version | tot_length |hbh_id | fragnment | hm|
S R S SRR S F~~~~t
S TLMSP header — ------- >

NOTE: The field hmis the hop-by-hop MAC and is present only for Handshake records occurring after
ChangeCipherSpec. The hbh_i d is present on records as described in clause 4.2.2.1.2.

Figure 2a: TLMSP record format not using containers used by the Handshake
and ChangeCipherSpec protocol

F--- - - - R Fom - Fommm e Fo o~~~
| type | version | tot_length |hbh_id | CL| C|...|] Cn |
R R LT +omm - - e Kt SOREEEREt
S TLMSP header — ------- > <- container(s) ->

NOTE: C1, C2, ... Cn represents containers, whose format is defined in Figure 3. The field hbh_i d is present on
records as described in clause 4.2.2.1.2.

Figure 2b: TLMSP record format using containers (as used by Application
and Alert protocols after server confirmation of TLMSP support)

Thefirst five octets of the TLMSP header comprisingt ype, ver si on, andt ot _| engt h shall be formatted asa
TLS 1.2 header as per clause 6.2.1 of IETF RFC 5246 [1].

ETSI

16 ETSI TS 103 523-2 V1.2.1 (2022-03)

EXAMPLE 1: type =0x15isusedto signal the Al ert protocol.

Thehbh_i d shall be afour octet value chosen and used for each hop as defined in clauses 4.3.5and 4.2.2.1.2. The
hbh_i d shall not be used as input to any MAC calculations, see annex E for justification.

Thefieldt ot _| engt h shall define the total (octet) length of the record following thet ot _I engt h field itself.
TLMSP alows record lengths up to 226 -1. However, if a TLMSP client is willing to accept lengths above the normal
IETF RFC 5246 maximum of 214 octets [1], this shall be signalled using the extension of IETF RFC 8449 [7]. The
server and middleboxes, observing the client extension may accept or limit the length by including their corresponding
maximum acceptable lengths in their extensions. The maximum length to be used shall be the minimum over the
lengths occurring in all entities extensions.

After the TLM SP record header, there shall follow the actual container(s) for those TLM SP protocols that use
containers, i.e. Al ert and Appl i cati on. For al other TLM SP protocols, a single fragment shall follow (see
clause 4.2.7.1 for details). When record protection is active, all protocols except ChangeCi pher Spec shal then
include a hop-by-hop MAC tag, denoted hmand computed according to clause 4.2.7.2.3, added at the end of the record
in order to integrity protect the entire record (excluding hmitself).

TS +- - - - e I +o ~+- -+

| ctxt_id |flags|minfo (OPTIONAL)|Iength |fragnent |dnf wr]

R Fomm o - s R T T T i S +- ~+- -+
<e----- cont ai ner header ~ ------ >

Figure 3: TLMSP container format

A container consists of a header, a (data) fragment (including areader MAC) and one or two additional MAC values,
dm (conditionally optional), and wm Specifically, each container shall start with a container header which shall
include al of the following: the associated one-octet context identifier ct xt _i d (wherect xt _i d =0isreserved),
two bytes reserved for f | ags, and a 16-bit | engt h field, indicating the length up to the end of the f r agnent field.

Each container shall have a maximum size of 2'%-1 octets, with the additional requirement that the total size of the entire
TLMSP record (defined by thet ot _| engt h field of the TLMSP header) shall be limited to maximum default (i.e. 2%
octets), or, a maximum negotiated value (up to 26 -1 octets).

o e e e oo +
| 1 | D| A| RESERVED |
o e e e oo +

Bit 15 14 13 12 0

Figure 4: f | ags field of the container header

Thef | ags field is used for signalling purposes, 3 hits are currently used and the remaining 13 are reserved for future
versions of TLMSP. Thel - and D- bits shall always be set to "0" for containers originating at the transmitting endpoint.
These bits shall be set to "1" by authorized middleboxesif the container was inserted by the middlebox (only the | bit
shall then be set to "1"), or, if the container is a deletion indication (both | and D bits shall be set to "1") inserted by that
middlebox, as defined in clauses 4.2.3.1.3 and 4.2.3.1.4.1. The A-bit is used to additionally signal that an inserted
container has auditing content, as defined in clause 4.2.3.1.3.5. Thus, the | - and D-bits always have value " 10"
whenever the A-bit hasthe value "1". Application data containers are those whose D- and A-bits are zero and that are
transmitted in Appl i cat i on protocol records.

If, and only if, the | -bit is set to 1, the middiebox information field (m_i nf o) shall be present, with format defined in
clause 4.2.3.1.3. The container header is followed by the protected data fragment associated with the indicated context.
Them i nf o field, when present, shall not be encrypted, but shall be integrity protected by including it when
computing the MAC values as defined in clause 4.2.7.2.

Thefragment field shall comprise the protected data fragment, including areader MAC (r m) value as defined by
clause 4.2.7.2.2 (not explicitly shown). After the f r agnent , one deleter MAC (dm) may be present, followed by a
writer MAC (w) defined by clause 4.2.7.2.2, where the writer MACs shall be present. The deleter MAC isused to
signal that a deleter middlebox has inspected an application data container and decided whether to forward it or not and
shall be present on such containersif, and only if, at least one middliebox has del ete access to the associated context.

ETSI

17 ETSI TS 103 523-2 V1.2.1 (2022-03)

The fact that an application data container with avalid deleter MAC isforwarded implies that the container has passed
inspection by deleter middleboxes. The deleter MAC shall also be present on delete indication containers, see

clause 4.2.3.1.4.1, and serves to authenticate auhorized deletions. The writer MAC field, similarly, isused to
authenticate authorized changes (or absence of changes) and insertions.

EXAMPLE 2: If only read accessis granted for a particular context, then only reader and writer MACs are
present in containers associated with that context.

The above container format of Figure 3 shall also be used for the Al ert protocol (t ype = 0x15), following a

Ser ver Hel | o confirming TLMSP support. Since the server's support for TLMSP can not be detected until the

Ser ver Hel | o hasbeen received, Al ert messages sent prior to the Ser ver Hel | o shall be formatted as standard
TLS 1.2 records, and TLMSP entities shall be implemented to be able to handleinitial Al er t messages sent by the
server without the container format.

For message with t ype = 0x14 or 0x16, indicating ChangeCi pher Spec or Handshake, these messages are
implicitly associated with the reserved context zero as defined in clause 4.2.1.2, and containers shall not be used. That
is, asingle fragment without container header, carrying the protocol message content shall follow directly after the
TLMSP header, as defined in clause 4.2.3.2. These messages are control messages and their semantics shall apply to all
contexts associated with the TLM SP session.

EXAMPLE 3: A ChangeCi pher Spec message is communicated as logically belonging to context zero, but
the effect of ChangeCi pher Spec will be to activate security for al contextsin use, not just
context zero (see clause 4.5 for details).

4.2.2 Message unit and record processing: cryptographic state and
synchronization

4221 General

422.1.1 Session and cryptographic state identification

In the sequel, the term message unit shall denote a TLM SP record, for protocols that do not use containers
(Handshake and ChangeCi pher Spec), and shall denote a container, for protocols that do use containers
(ApplicationandAl ert).

Each TLMSP session is associated with a state, i.e. cryptographic parameters that include a chosen PRF and cipher
suite, current sequence numbers, replay protection list (e.g. window-based list of already received sequence numbers),
master keys, the set of contexts and their associated key material. Further, the session is associated with non-
cryptographic configuration parameters, such as the list of middlieboxes and their access rights. When several TLM SP
sessions are active, the correct current state and configuration can be identified at an entity (endpoint or middliebox) by
the TCP socket information (1P address, port)-values of the local hop or, if configured, the hbh_i d field of the record
header as defined in clause 4.2.2.1.2.

NOTE: Since each hop of the path from sender to receiver uses a separate, locally created TCP session (initiated
asdescribed in clause 4.3.2), the identifier for the state information islocal to that hop.

Unless server support for TLM SP on a particular service port is known in advance, TLM SP should use the relevant,
well-known port for TLS usage for the given application layer protocol.

ETSI

18 ETSI TS 103 523-2 V1.2.1 (2022-03)

A TLMSP state comprises several sub-states relating to the different entities (endpoints share certain unique parameters
with different middleboxes) and certain parameters are unique to each TLM SP contexts (e.g. keys). Thus, within the
state, entity identities and context identities shall be used to further retrieve relevant state information.

Clauses 4.2.2.3.3.2 and 4.2.2.2.2 describe how to determine the entity identities of the message unit originator and
MAC authors, respectively, (from which relevant state information can be retrieved), and clauses 4.3.7 and 4.3.10
describe how to manage context-specific key material.

42.2.1.2 TLMSP session multiplexing

Session multiplexing is the placement of multiple TLM SP sessions on a given transport connection, whether
concurrently or serially. While the supporting mechanisms of the present clause shall be implemented, the ability and
willingness of an entity to process multiple TLM SP sessions on a single transport connection is optional, and the
decision to use multiplexing is a configuration issue left outside the scope of the present document.

In order for session multiplexing to be used on a transport connection between two entities, both entities shall be
configured to use thisfacility. When this condition is met, the entity that initiates a given transport connection decides
which sessions to place onto it, and all records for those sessions shall then be carried on that transport connection.

Regardless of whether the use of multiplexing is configured, the hbh_i d field is present in all record headers on
transport connections between the client and a middlebox, or between two middleboxes. In order to allow unambiguous
parsing of records on transport connections terminating at the server, whose TLM SP support may not beinitially known
and which may need to service connection requests from TLS clients, the hbh_i d field cannot beinitially included in
the record headers on such connections. For transport connections terminating at the server, the hbh_i d field shall be
added to all record headers that follow the record containing the Ser ver Hel | o of the first session placed on the
connection, if and only if that Ser ver Hel | o confirms TLM SP support.

Each entity that initiates a transport connection chooses the hbh_i d values used for the sessions carried on that
connection. The hbh_i d value chosen for agiven sessionissignaledintheC i ent Hel | o, viathe TLMSP
handshake extension defined in clause 4.3.5. This value shall be selected so that it is unique among the concurrent
active TLM SP sessions on the same connection. Signalling the chosen hbh_i d valueinthe Cl i ent Hel | o alows
recipientsto determinethe hbh_i d value assigned to a new session when the hbh_i d field is not yet present in record
headers. When an entity sendsa Ser ver Hel | o, it shall set the hbh_i d valuein the TLMSP handshake extension to
the value already chosen for the session, asindicated in the corresponding C i ent Hel | 0. Thisallows entities
receiving a Ser ver Hel | o to map it to the correct session using this value when the hbh_i d field is not yet present in
record headers.

EXAMPLE: Client ¢ hastwo trangport connections, t 1 and t 2, with middlebox mL. Middlebox ml has one
transport connection t 3 with middlebox m2. Middiebox n2 has one transport connectiont 4 with
TLMSP server s. None of the transport connections have been used yet. Thehbh_i d field will
aways be present in record headersont 1,t 2, andt 3, but not initially ont 4. c initiates session
sltos overt1landsessions2tos overt 2, separately choosing an hbh_i d value for each,
with no constraints on the choices (e.g. they could be equal). ¢ indicatesits choicesto ml by
setting the hbh_i d fieldsin the TLMSP extensions of the respective Cl i ent Hel | os
accordingly, as well as by using the chosen valuesinthe hbh_i d fields of the record headers it
sendsto ml. Upon receiving the Cl i ent Hel | o for each session, mL choosesitsown hbh_i d
value for each session. These choices are independent of the choices ¢ made, and the newly
chosen values are not equal, as both sessions will be carried over t 3 to n2. nl indicates its
choicesto n2 by editing the respective Cl i ent Hel | os accordingly, as well as by using the
chosen valuesin the hbh_i d fields of the record headersit sendsto n2. n2 likewise chooses its
own hbh_i d value for each session, and these are not equal as both sessions will be carried over
t4tos. Ass isaserver, n2 doesnot initially includethe hbh_i d field in record headers it
sendstos. nR first sendsthe Cl i ent Hel | o for s1 tos viat 4, after editing thehbh_i d vaue
contained therein to reflect its choice. n2 cannot yet sendthe Cl i ent Hel | o for s2 overt 4, as
it waits for TLMSP confirmation inthes1 Ser ver Hel | o (alternatively, it could avoid this
delay by opening another transport connection to s). Once n receivesthe Ser ver Hel | o fors1
from s confirming TLM SP support, it beginsincluding the hbh_i d field in record headers it
sendsto s and sendsthe Cl i ent Hel | o for s2 tos. Both handshakes proceed, and hbh_i d
fields are now present in all record headers on all transport connections.

ETSI

19 ETSI TS 103 523-2 V1.2.1 (2022-03)

NOTE 1: Onatransport connection for which multiplexing is not used (that is, on which only one session is ever
carried), the hbh_i d has no semantic purpose in the protocol. However, its value can be chosenin a
way that aids network diagnostics.

NOTE 2: In sometopologies, it is feasible for entities to make the same hbh_i d value assignments for each
session (that is, for a given session, assign the same hbh_i d value on each hop), and doing so can aid
network diagnostics.

4222 MAC overview

42221 General

This clause provides an overview of the presence and processing of various MACs on message units and records. Prior
to ChangeCi pher Spec, no message unit or record (hop-by-hop) MACs shall be present. This can be viewed
equivalently as either being due to no message unit or record protection yet being active, or as being due to the cipher
suite TLIMSP_NULL_W TH_NULL__NULL being active and without any explicit IV.

After security activation, message units shall include up to three MAC fields as defined in clause 4.2.7.2.2:
e areader MAC field (using the key shared with the other readers);
e addeter MAC (using the key shared with the other deleters);

o awriter MACfield (using the key shared with the other writers or the pairwise key shared with the
downstream endpoint).

Thereader MAC is used for the detection of changes made by unauthorized parties (which includes middleboxes that
have no granted access to a particular context). Successful reader MAC verification implies that the data has not been
corrupted in transit (inadvertently or maliciously). When reliable transport is used, an incorrect MAC strongly suggests
adversarial attack. The deleter MAC serves to detect deletions (or tampering with deletions) by unauthorized parties
(including middleboxes with less than delete privilege level). A failure of the deleter MAC verification while the reader
MAC passes verification can only happen if amiddiebox with read but no delete access has modified the datain transit,
or, if an entity with no access has modified the deleter MAC. The writer MAC similarly serves to detect unauthorized
changes by parties with less than write privilege level. A failure of the writer MAC verification while the reader MAC
passes verification can only happen if a middlebox with read but no write access has modified the datain transit, or, if
an entity with no access has modified the writer MAC. Generation of the reader, deleter, and writer MACsis defined in
clause 4.2.7.2.2.

Records shall include a hop-by-hop MAC field (using the pairwise key shared by the sending and receiving
neighbours). Generation of the hop-by-hop MAC isdefined in clause 4.2.7.2.3.

When generating a new message unit, the reader MAC shall first be computed. The plaintext data and the reader MAC
shall then be encrypted and placed together with the explicit part of the Initialization Vector (V) inthef r agnent
component of the message unit.

NOTE 1: If an AEAD transformis used, the MAC generation step istypically integrated into that transform [3].

Then, if adeleter MAC isto be present according to clause 4.2.1.3, the deleter MAC shall be computed and added. The
writer MAC shall then be computed and added, except for message units so indicated in Table 2.

Finally, when completing the generation of a new record carrying the message unit (for containers, after adding the last
container), a hop-by-hop MAC shall be computed and added regardiess of whether the record is composed of multiple
containers or is a message unit itself.

When a middlebox forwards a message unit, if it contains a deleter MAC and the middlebox has delete access, the
middlebox shall recompute the deleter MAC. If the middlebox has write access, it may choose to re-cal culate the reader
MAC and re-encrypt the message unit even if it does not perform any modifications. If the writer middlebox did modify
the message, it shall recompute the reader MACs. Regardless of whether the middiebox made a modification, it shall re-
compute the writer MAC.

When a middlebox forwards a record, it shall always recompute the hop-by-hop MAC regardless of whether it made
modifications to the record.

ETSI

20 ETSI TS 103 523-2 V1.2.1 (2022-03)

When an entity computes a new MAC in preparation for transmission of a message unit, or computes a new hop-by-hop
MAC in preparation for transmission of arecord, it always usesits own entity identity (to indicate itself asthe MAC
author), and as described in clause 4.2.2.3.2, the current transmit sequence number values.

NOTE 2: Re-computation of certain MACs for otherwise unmodified message units and records as described above
is necessary to prevent reader middleboxes or unauthorized 3™ parties from "undoing” changes and
deletetions performed by upstream writer or deleter middleboxes, see annex E.

On the receiving side, the order of the steps described previously in this clause shall be reversed: all MAC calculation
steps shall be replaced by MAC verifications and the encryption step shall be replaced by decryption. As described in
clause 4.2.7.2, verification of the reader MAC requires decryption to first take place, whereas verification of the hop-
by-hop, writer, and deleter MACs shall be done based on the encrypted data.

MAC verification by a middlebox shall be done for those MACs for which the middlebox possesses the corresponding
key, and only for those MACs. The key used for the hop-by-hop MAC is aways known by both adjacent entities, which
alows for robust sequence number handling by middleboxes lacking any read or write access at all for a given context.
Thisisdescribed in clause 4.2.7.2.3.

If any of the performed MAC verifications fail, further processing of the received message unit or record shall be
aborted. On verification failure, a corresponding bad_r eader _mac, bad_del et er _mac,orbad_writer_mac
alert shall be raised in the corresponding context. For the hop-by-hop MAC, abad_r ecor d_nac aert shal be raised
in context zero. An application-dependent action shall be taken in response to the alert. Defining this action is however
out of scope of the present document.

EXAMPLE: In an example system, aMAC verification failure is recorded in alog and the session is
terminated.

Anincorrect MAC on any of the bad MAC alerts above should result inissuing abad_r ecor d_nac alert in context
zero and terminating the session.

42222 MAC author determination

Each received record has a hop-by-hop MAC, and each received message unit has up to three additional MACs: reader,
deleter, and writer MAC. The author (entity identity) of areceived MAC, which in general can be distinct from the
originator of the message unit and can also be distinct for different MACs, is determined as follows:

. For hop-by-hop MACs, the author is the current upstream neighbour, as defined in clause 4.2.7.2.3. Any
indication in the received record of the author associated with the received MAC (e.g. included inan 1V) is
ignored.

. For writer MACs, the author is the nearest upstream entity that has write access to the message unit's context.
Any indication in the received message unit of the author associated with the received MAC message unit is
ignored.

. For deleter MACs, the author is the nearest upstream entity that has delete access to the message unit's context.
Any indication in the received message unit of the author associated with the received MAC message unit is
ignored.

. For reader MACs, the author is the entity indicated by the explicit 1V associated with the received MAC.

NOTE: For an application data container in a particular context, the potential authors of each of its reader, deleter,
and writer MACs are those entities with corresponding access rights to the context. It is not possible to
distinguish among the potential authors of each of these MACsin an assured way as they all have access
to the same keys.

ETSI

21 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.2.2.3 Sequence numbers

42231 General

Sequence numbers shall be used for security processing, for the purposes of cryptographic synchronization and replay
protection. Under TLM SP, sequence numbers are not defined or maintained prior to ChangeCi pher Spec. Following
ChangeCi pher Spec, when anon-NULL cipher suited is selected (offering at least one of confidentiality or
integrity) at each entity, each message unit is associated with unique context-independent and context-dependent
seguence numbers.

NOTE 1. Even though reliable transport such as TCP is assumed, the fact that middleboxes may delete or insert
message units could, without due consideration, make TLM SP vulnerable to replay, reorder, or deletion
attacks.

NOTE 2: Thereisin general no one-to-one correspondence between TLM SP protocol messages, TLM SP records,
and sequence numbers. For example, a single TLM SP Handshake protocol record can contain more than
one TLM SP Handshake message, al being protected as a single message unit and thus all being
associated with the same sequence number. Likewise, a TLMSP Appl i cat i on protocol record may
comprise multiple containers, each to be processed and protected with a distinct sequence number.

In this clause, TLM SP entities are numbered starting frome = 0 at theclient,thene = 1, 2, .., nwithn
corresponding to the number of middieboxes and finally e = n+1 corresponding to the server. Each entity, i ,
involved in a TLM SP session shall maintain six arrays of 64-bit sequence numbers and two individual 64-bit sequence
numbers as follows:

. seq_client _to_server_rx[j], for j rangingover al entities which are topologically upstreamin
the client to server direction,i.e.for 0 < j < i, andseq_server_to_client _rx[j], forentities
located upstream in the server to client direction, i.e. for i < j < n+1. These valuesshall be used to
record the total number (over all contexts) of valid (i.e. integrity verified) message units that have been
received by, or originated at, the respective entity j for the direction of transmission;

. seq_client_to_server_rx_{j][c], for j rangingover al entities which are topologically
upstream in the client to server direction,i.e.for 0 < j < i, and
seqg_server _to_client _rx _Cj][c], forentitieslocated upstream inthe server to client direction,
i.e.for i < j < n+l1.Inboth cases, ¢ rangesover the set of al octet context identifiers defined for the
session (as signalled by the TLM SP handshake extension, see clause 4.3.5). These values shall be used to
record the total number of valid message units that have been received by, or originated at, the respective
entity j in each context c;

. seq_client_to_server _t X, countingthe total number of message units sent (either originated or
forwarded) by entity i in any context in the client to server direction, and, seq_server_to_client _tx
similarly counting the total number sent in the other direction;

. seqg_client _to_server_tx (] c], counting the total number of message units sent by entity i in
context ¢ in the client to server direction, and, seq_server _to_client _tx_(c] having the equivalent
counting functionality, but in the other direction of transmission. In both cases, ¢ ranges over the set of all
contexts defined for the session (as signalled by the context list of the TLM SP handshake extension).

NOTE 3: It will always hold that the sum over all contextsc of seq_client _to_server_rx_(j][c]will
beequal to seq_client _to_server rx[j]. Likewise thesum over al contextsc of
seq_client_to_server_tx_(c]will equal seq _client _to_server_tx.Anaogous
relations will hold for the other direction of transmission.

The context-independent sequence numbers defined above are also referred to as global sequence numbers, asthey are
used to maintain a global ordering among all message units. The TLM SP session shall be terminated if any of the above
defined sequence numbersisincremented to cause wrap-around in the 64-bit sequence number space.

ETSI

22 ETSI TS 103 523-2 V1.2.1 (2022-03)

In the sequel, for brevity, only a specific direction of transmission from client to server is considered. Therefore, the
direction aspect is omitted from notation, and only valuesseq_r x[j],seq_rx_dj][c], seq_tx, and,

seq_t x_(c] areconsidered, bearing in mind that processing of messagesin the other direction shall be completey
analogous, but using the sequence number(s) associated with that direction. When [] is used as part of an array
reference, it represents the set of sequence numbers referred to by all values of that array index. For example,
seq_rx_d][] referstoal per-context receive sequence numbers an entity maintains for upstream entity j ina
given direction.

When entity i receives a message unit in context ¢, if no tampering has occurred, seq_r x[j] and
seq_rx_dj][c],wherej rangesover the set of MAC authors for this message unit (different MACs can have
different authors), respectively correspond totheseq_t x and seq_t x_([¢] values of each MAC author at the
point when they authored the given MAC. Maintenance of these sequence numbersis essential for processing the
MAC(s) of received message units.

After amessage unit has been received and processed, only the applicable context-independent receive sequence
numbers and the applicable receive sequence humbers associated with the specific context, ¢, of the message unit shall
be updated. Likewise, after a message unit has been transmitted, only the context-independent transmit sequence
number and the transmit sequence number associated with the specific context, ¢, of the message unit shall be updated.

EXAMPLE: In a TLMSP session with three contexts, c1, ¢2, and ¢ 3, when computing any of the writer or
deleter MACs for an application data container associated with context ¢ 2 that isto be
transmitted, all threevaluesseq_tx_(C[cl] ,seq_tx_(c2],andseq_t x_(c3] areused
asinputs to the MAC calculations (by contcatenating them, as explained below). After the
message has been passed on downstream, however, only the valuesseq_t x and
seq_t x_(c2] areincreased by one. For the reader MAC of this container, only the global
valueseq_t x isused and increased by one after the container is processed. The hop-by-hop
MAC of the entire record in which this container is transmitted also uses only the global value
seq_t x, and uses the same value as used when processing the reader MAC of the first container
to beincluded in the record. More precise details are given below. This seemingly complex
sequence number handling is needed to protect against attacks which would otherwise be possible
on protocols which selectively allow insert and delete operations in multiple contexts by multiple
entities. Essentially, it is necessary to use both context-specific sequence numbers (viathe
individual seq_(][c] values), as well as a session-unique identifier for each message unit (here,
formed by the set of al seq_(C[c] values). Annex E and in particular clause F.3 gives detailed
rationale for this handling.

Usage of sequence numbers begins after the ChangeC pher Spec message, at which point all sequence numbers
have the value O (zero) in 64-bit representation. While there are two Handshak e messages occurring before
ChangeCi pher Spec, TLMSPKeyMat eri al and TLMSPKey Conf , which require protection, these messages shall
not depend on sequence numbers for the security processing of their contents, which isjustified in more detail in

annex E.

NOTE 4: These messages have distinct types, are computed with pairwise distinct keys shared only between pairs
of entities, and each middlebox sends/receives only one message of each type. Thus, it does not matter
from a security point of view that the record layer processes them without sequence numbers, see annex E
for further discussion.

When an entity transmits the ChangeCi pher Spec message, the pending write state in the associated direction of
communication shall become the active state, setting seq_t x tozeroand seq_t x_(C[c] to zero for al contextsc.
When an entity receives the ChangeCi pher Spec message, the pending read state in the associated direction of
communication shall become the active state, settingseq_r x[j] andseq_rx_C[j][c] tozerofor al upstream
entitiesj and contextsc.

NOTE5: Thisisadifferenceto TLS 1.2, [1], which uses sequence numbers also for unprotected messages, before
ChangeCi pher Spec. Messages occurring before ChangeCi pher Spec are still protected against
modification and reordering by their inclusion in the Fi ni shed and MboxFi ni shed verification
hashes. Further, since TLM SP does not support renegotiation, Handshak e messages occuring before
ChangeCi pher Spec cannot be protected in any other way. This approach greatly simplifies message
insertions/del etions by middleboxes that may occur during intial stages of the TLM SP handshake.

ETSI

23 ETSI TS 103 523-2 V1.2.1 (2022-03)

At this point, regular sequence number maintanenance is performed for all message units sent or received, and all
records include a hop-by-hop MAC. The author of each MAC, depending on its type, includes either the context-
independent transmit sequence number or a context-based sequence number formed by concatenating the transmit
sequence numbers for all contexts as follows:

s =seq_tx O] || seq_tx 1] || -..-1| seq_tx_n_ctxt-1]
wheren_ct xt isthetotal number of contexts defined for use in the TLM SP session.
NOTE 7: Sinceeachseq[j] is64 bits/8 octets, s isan 8*n_ct xt octet value.

Further details of handling of sequence number values are found in clauses 4.2.2.3.2 and 4.2.2.3.3, below.

42232 Outgoing message units and records

After ChangeCi pher Spec issent, when an entity] prepares a message unit for transmission in context c, it usesthe
current values of seq_t x and seq_t x[c] , asrequired, for the security processing defined in clauses 4.2.3 and 4.2.7.
Immediately after completing processing of the message unit (before processing any further message unit for
transmission), the entity shall update its own sequence numbers asfollows: seq_tx = seq_tx + 1 and
seq_tx_(Cc] = seqg_tx_(Cc] + 1.Ifthemessage unitisadeletionindication container, seq_t x and

seq_t x[c] shal be further updated as described in clause 4.2.3.1.4.2.

An entity preparing a message unit for transmission that does not require any security processing, for example an entity
forwarding a container in a context to which is has no access rights, shall still update the transmission sequence
numbers as described above.

When generating the hop-by-hop MAC (see clause 4.2.7.2.3) for arecord that is composed of one or more containers,
the sequence number used isthe value of seq_t x when the first container in the record was being prepared. That is,
when creating a new record for transmission that will consist of one or more containers, prior to processing the first
container for that record, entity j temporarily records the current value of seq_t x and then later uses that value when
computing the final MAC, the record's hop-by-hop MAC.

EXAMPLE: Consider a TLMSP session with three contexts, c1, ¢c2, and ¢3. Entity j prepares asingle record
with three containers for transmission (corresponding to three message units for contextsc1, c2,
and ¢ 3, in that order). Each container will be processed with particular values of seq_t x and the
set of per-context sequence numbersseq_C[] = {seq_tx_C[cl], seq_tx _(Cc2],
seq_tx_(c3]}.Givenseq_t x = s prior tothe processing of the first container, the first
container will be processed withseq_t x = s, thesecondwithseq _tx = s + 1,andthe
thirdwithseq_tx = s + 2,withseq_t x havingthevaueseq_tx = s + 3 following
the processing of the final container. Givenseq_C[] = {nl, n2, n3} priortothe
processing of the first container, the first container will be processed withseq_C[] = {nl,
n2, n3},thesecondwithseq_C[] = {nl + 1, n2, n3}, and thethird container with
seq_C[] ={nl + 1, n2 + 1, n3},withseq_Chavingthevalueseq_C[] = {nl +
1, n2 + 1, n3 + 1} following the processing of the final container. Thevalueseq_t x =
s isused to compute the hop-by-hop MAC of the record. If there would have been addititional
contexts in the session, their corresponding sequence numbers would have been included in each
seq_(C[] value, but would remain constant, throughout the processing.

ETSI

24 ETSI TS 103 523-2 V1.2.1 (2022-03)

42233 Incoming message units and records

4.2.2.33.1 General

Each received record has a hop-by-hop MAC which shall be verified, and each received message unit has up to three
MACsthat may need to be verified, depending on accessrights: reader, writer, and deleter. Verification of these MACs
depends on using correct sequence numbers, which requires first determining the author of each MAC according to
clause 4.2.2.2.2. For agiven MAC that isto be verified, once theidentity, e_i d, of the MAC author is determined, the
current value of seq_rx[e_i d] orvaluesof seq_rx_C[e_id][] arethenused asrequired to perform the
verification.

After al required MAC verifications are successfully performed for a message unit, the receive sequence number state
isupdated. Thisrequiresfirst determining the message unit originator according to clause 4.2.2.3.3.2. Once the message
unit originator, i , is determined, the receive sequence number state of receiving entity k shall be updated as follows:

. seq_rx[j] = seq_rx[j] + landseq_rx_Cj][c] =seqrx dj]l[c] + 1,forj =i,
i +1, .., k-1, andwherec isthe context with which the message unit is associated,;

. If the message unit isadeletion indication, seq_r x[] andseq_rx_([] shal be further updated as
described in clause 4.2.3.1.4.2.

NOTE: An entity that receives a message unit in acontext to which is has no access rights still updates the
receive sequence numbers as described above. In this case, only the hop-by-hop MAC of the associated
record is possible to be verified, but thisis sufficient to ensure correct modification of the receive
sequence number state.

42.2.33.2 Message unit originator determination

For all containers, areceiving entity determines the originating entity by examining the container header. If the header
containsthem i nf o field (see clause 4.2.3.1.3), then the container originator isindicated by thee_i d subfield.
Otherwise, the originator is the upstream endpoint.

Handshake records are the only record message unit type that require originator determination. In general, the originator
of a handshake record can be determined by examining the Handshak e message(s) within. However, there is no need
to determine the originator of handshake records that are received prior to ChangeCi pher Spec. For handshake
records that may be received after ChangeCi pher Spec:

. If the record contains at least one Fi ni shed or MooxFi ni shed message, the originator is the upstream
endpoint.

3 If the record consists of an MooxLeaveNot i f y message (such messages cannot be sent any other way), the
originator isthe mbox_ent i ty_i d present in the message.

. If the record contains an MboxLeaveAck message, the originator is the upstream endpoint.

4.2.3 Processing of specific message unit types
4231 Container message units

42311 Container usage
The following appliesto the Appl i cati on and Al ert protocols.

Containers may be re-distributed between records of the same content type. A single container shall never be split
across more than one record. However, for traffic flow optimization purposes:

1) Middieboxes (both readers and writers) may split asingle received TLM SP record comprisingC > 1
containersintoR (1 < R < C) digtinct records before forwarding.

2) Middleboxes may combine TLMSP containersfrom R > 1 separate TLMSP records into a single record.

ETSI

25 ETSI TS 103 523-2 V1.2.1 (2022-03)
In both cases, the original order between containers shall always be strictly preserved and the middlebox shall construct
the TLM SP record header, specifically thet ot _| engt h field, to correctly reflect the total length.

This splitting and combining applies also to the sending endpoint: the sender may buffer fragments, corresponding to
several containers, received from the application layer and place those containers in one or more records before
submitting them to the transport layer.

The present document specifies the production and deletions of containersin clauses 4.2.3.1.3t04.2.3.1.6.

Whenever there is a new container originated by an entity or a modified container generated by a middlebox
(change/re-write, insert or delete):

e Theresulting container shall be processed with anew IV that contains the author e_i d and is otherwise
compliant with the IV format of the used cipher suite, see annex A.

. For Appl i cat i on protocol containers other than audit containers, the resulting container shall include two
or three MAC fields as defined in clause 4.2.7.2.2:

1) amandatory reader MAC field (using the key shared with the other readers);

2) adeleter MAC (using the key shared with the other deleters) on all containers of contexts with granted
delete access; and

3) amandatory writer MAC field (using the key shared with the other writers).

. For audit and alert containers, the resulting container shall include exactly two MAC fields as defined in
clause 4.2.7.2.2:

1) areader MAC field (using the key shared with the downstream endpoint); and
2) awriter MAC field (using the key shared with the downstream endpoint).
Application data containers shall not be transmitted in context zero.

NOTE: Deleteindications are considered part of Appl i cat i on protocol and processing is therefore covered by
the second bullet, except that they do not have a writer MAC.

42.31.2 Modifications

In certain cases, a middlebox can modify the contents of a container that it is forwarding. The only containers that
support modification of their contents are application data containers. Only writer middleboxes with accessto the
associated context may modify the contents of such a container. When doing so, the writer middlebox shall leave the A,
I, and D flag bits unchanged. If them i nf o field is present, thee_i d shall be left unmodified, see clause 4.2.3.1.3.
Following the modification, the middlebox shall update the container MACs as described in clause 4.2.2.2.1.

Modifying content at an endpoint is an application layer issue and is out of scope of the present document.

42313 Insertions generally

Insertions are the introduction of new containers into the session by middleboxes. Containers originating at endpoints
are not considered to be insertions. When inserting a container, the middlebox shall set the | -bit of thef | ags
container header-field to 1.

A middlebox that inserts a container shall always add an m i nf o field to the container header, which provides
information required by each downstream entity to maintain its sequence number state. Them_i nf o field shall have
the structure shown in Figure 5.

Figure 5: m_i nf o field

ETSI

26 ETSI TS 103 523-2 V1.2.1 (2022-03)

Every m_ i nf o shall contain the one-octet subfield e_i d, which isthe entity identity of the middlebox that performed
theinsertion. Asisexplained in clause 4.2.3.1.4.1, deletion indication containers also include the sr ¢ and del _c
subfields, which are one and two octets, respectively.

42314 Deletion indication containers

423.14.1 General

Deletion indication containers are Appl i cat i on protocol message units that signal the deletion of a continguous set
of application data containers, associated with a particular context, to al downstream entities. Application data
containers may be deleted by middleboxes having del ete access to the corresponding contexts. No other type of
container may be deleted. If one or more contiguous containers originated by the same entity in a given context are
deleted, they shall be replaced by at least one deletion indication container in that same context.

The transmission of a deletion indication may be postponed, but shall occur at the latest immediately before another
container is forwarded to the destination endpoint. When inserting a deletion indication container, a middlebox shall:

. setthect xt _i d field of the container header to the context of the deleted containers;
. set the D-bit of thef | ags container header field to 1; and

. includethesr ¢ and del _c subfieldsinthem i nf o field, setting sr ¢ to the entity identity of the originator
of the deleted container(s) and del _c to the number of containers deleted. The value of del _c¢ shall not be
zero, i.e. delete indications shall only be generated if at |east one deletion has been performed.

A deletion indication container may contain a payload inthe f r agnment field. It is application dependent and out of
scope of the present document how to create such payloads and, as the receiving entity of such payloads, how to take
action in response to them. An example may be the following.

EXAMPLE 1: The payload comprises the human readable string: "Malicious content removed"”. The endpoint
acts on this by terminating the session.

Deletion indication containers shall have areader and deleter MAC, but shall not have awriter MAC.

The following approach should be used when signalling deletions. A sequence of delete indication containers are sent at
different pointsin time during the "window" of deletions. When the last deletion indicator has been sent, the normal
flow of containers resumes, viathe middlebox. This approach simplifies handling and is more preserving to the audit
history of deletions. Alternatively, if n consecutive containers originated by the same entity are deleted from the same
context, a single delete indication container may be transmitted after the nth deletion.

EXAMPLE 2: Assume amiddlebox has write access to context 1, but has no access to context 3, and assume the
middlexbox isin progress of deleting some messages relating to context 1, and which it has not yet
reported. At this point a container is received relating to context 3. The middlebox reports all
outstanding deletions from context 1, before forwarding the container relating to context 3.

EXAMPLE 3: Assumean entity withe_i d = | hasfirst generated 5 containers and that a middlebox with
e id = k (k >) deletesthelast 3 of them. Entity j then generates 7 additional containers,
out of which the 2 last are deleted by middlebox k. Middlebox k forwards the two first containers
but does not forward (i.e, "disposes of") containers 3, 4, and 5. Middlebox k then generates afirst
delete indication to replace containers 3-5, containing avalue pairsrc = j, del _c¢ = 3.
Then, middlebox k forwards containers 6-10, but disposes of containers 11 and 12. After the 12
received container from entity j , a second delete indication will be generated by middlebox k,
now containing avalue-pairsrc = j, del _c = 2. Thereforeatotal of two delete indication
containers are produced by middlebox k.

EXAMPLE 4: Inthe same scenario as above, middlebox k could aternatively replace each deleted container by
exactly one delete indication container, each havingsrc = j, del ¢ = 1, resultinginatotal
of 5 delete indication containers.

ETSI

27 ETSI TS 103 523-2 V1.2.1 (2022-03)

NOTE: It could be tempting to conceptually view the deletion of a single container as a modification, rewriting an
original container as a delete indication. However, this view does not extend to the multiple-deletion case,
which iswhy a delete of one or more containersis defined as the removal of those containers followed by
the insertion of a deletion indication.

42.3.1.4.2 Sequence number handling

As deletion indication containers represent more than one container, additional steps are required, beyond those
described in clause 4.2.2.3, to update the sequence number state when processing them.

When adeletion indication is prepared for transmission in context ¢, after the updatesto seq_t x andseq_t x_([c]
defined in clause 4.2.2.3.2, the following additional updates are performed using thedel _c¢ valueincluded in the
transmitted deletion indication:

. seq_tx = seq_tx + del _c
. seq_tx_(Cc] = seq_tx Cc] + del_c

When adeletion indication is received by entity k in context c, after the updatestoseq_rx[] andseq_rx_C[][c]
defined in clause 4.2.2.3.3, the following additional updates are performed, based on thesr ¢ and del _c values
obtained from the m i nf o field of the received deletion indication:

e seq_rx[j] = seq_rx[j] + del_c, for j = src, src+l, ., k-1
. seq_rx_djll[cl] = seqrx dj]l[c] + del _c, for j =src, src+l, ., k-1
42315 Audit containers

Audit containersare Appl i cat i on protocol message units that convey information, as a payload in the container

f ragment field, pertaining to the processing of application data containers or the generation of alert containers. The
production of audit containers shall be configured on a per-context basis during the handshake, see clause 4.3.5.
Production of audit containers shall not occur prior to completion of the handshake.

If theaudi t parameter for a context is configured with the value audi t _i nf o, &l entities with at least read access to
the context may originate audit containers pertaining to application data or aert containers in that context. While the
contents of the audit payload are out of the scope of the present document, they may provide processing hints to
downstream entities for downstream entities, describe actions taken by middleboxes on the associated application data
containers, or provide supplemental information for an aert.

If theaudi t parameter for a context is configured with the valueaudi t _t r ai | , the meaning is the same as for

audi t _i nf o, with the additional requirement that every middlebox with at least read access to the context shall insert
audit containers for all application data containers associated with the context for which a non-trivial action was taken.
Which actions to consider as non-trivial is application dependent and left oustide the scope of the present document.

EXAMPLE 1. For writer middleboxes, performing insert, modify, or delete could be considered non-trivial
actions.

When originating an audit container, an entity shall:
. setthect xt _i d field of the container header to the context of the associated containers; and
. set the A-bit of thef | ags container header field to 1.

Audit containers shall have areader and writer MAC, but shall not have adeleter MAC. Audit containers shall not be
modified or deleted by middleboxes.

Regarding placement of the audit container, if it pertainsto a deleted container, the audit container should be inserted
after the delete indication corresponding to the deleted container. In al other cases, the audit container should normally
be inserted immediately after the container associated with the audit information. However, as long as the audit
container contains enough information to identify the application data container(s) to which the audit information is
related, its may be originated in the session at any point.

ETSI

28 ETSI TS 103 523-2 V1.2.1 (2022-03)
EXAMPLE 2: Anaudit container could be placed immediately after a modified (or inserted) container or
immediately after a delete indication.

EXAMPLE 3: Anentity could provide processing hints to downstream entities by placing the audit contai ner
ahead of the associated application data container(s).

4.2.3.1.6 Alert containers

Alert containersare Al ert protocol message units that signal error or warning conditions to downstream entities. They
begin to be used in a session as described in clause 4.4.1. Endpoints may originate an alert container in any context, and
amiddlebox shall only insert an alert container in a context to which it has at least read access (which includes at least
context zero). The ct xt _i d field of the container header shall be set to the context to which the alert applies.

EXAMPLE: ctxt _i d =0isused for dertsrelating to the handshake itself.

Alert containers shall have areader and writer MAC, but shall not have a deleter MAC. Alert containers shall not be
modified or deleted by middleboxes.

NOTE 1: Prior to ChangeCi pher Spec, aert containers will have zero-length MACs.

The key selection for alert container MACs described in clause 4.2.7.2.2 allows al middieboxes, with any level of
granted context access, to verify the integrity of an alert container and also allows the endpoint(s) to verify the
authenticity.

NOTE 2: By definition, all middieboxes have write access to context zero and are therefore always authorized to
insert Al ert protocol messages/containers associated with context zero. Refer to annex E for security
considerations.

4.2.3.2 Record message units

42321 Handshake message units

A handshake record isaHandshake protocol message unit that contains one or more Handshake messages.
Middleboxes shall not:

. delete or replace Handshak e messages except under the message-specific conditions stated in clauses 4.3.6
and 4.3.7;

. modify parts of Handshake messages added by other entities, except as defined for middlebox discovery in
clause 4.3.2.3; or

e following ChangeCi pher Spec, forward the contents of an inbound handshake record using more than one
outbound record, or combine the contents of more than one inbound handshake record into one outbound
record.

Following ChangeCi pher Spec, handshake records have areader MAC, but do not have a deleter MAC or awriter
MAC, and have a hop-by-hop MAC. Handshake records are always associated with context zero.

42322 ChangeCipherSpec message units

A ChangeCi pher Spec recordisaChangeCi pher Spec protocol message unit that contains one
ChangeCi pher Spec message. There are never any MACs present on a ChangeCi pher Spec record.
4.2.3.3 Middlebox processing summary

A middlebox shall never insert, delete, or modify messagesin other protocols than those described in clauses 4.2.3.1
and 4.2.3.2. Table 1 summarizes for each protocol whether containers shall be used and which operations on message
units are allowed.

ETSI

29

ETSI TS 103 523-2 V1.2.1 (2022-03)

Table 1: Middlebox processing summary

Protocol

Use of Containers

Middlebox Modifications or
Deletions Permitted

Middlebox Insertions Permitted

Handshake No

Only under the message-
specific conditions stated in
clauses 4.3.2.3, 4.3.6 and
4.3.7, and via piggy-backing as
described in clause 4.3.1.

Yes.

ChangeCi pher Spec |No

No

No.

Alert Yes No Yes, for contexts to which at least
read access is granted.

Application Yes Yes, by deleter and writer Yes. Application data containers may
middleboxes but only to be inserted by writer middleboxes.
non-audit containers. Only Deletion indication containers may
writer middleboxes may modifiy |be inserted by deleter middleboxes.
a container in other ways than |Depending on per-context audit
deletions. configuration, audit containers may
Any middlebox may abort the be inserted by reader middleboxes.
session.

4.2.3.4 MAC usage summary

Table 2 summarizes MAC usage. The valuei below refers to the entity identity where a message is currently being
processed, entity i+1 then being the downstream neighbour and dest being the downstream endpoint destination.

RK (c)/DK(c)/WK(c), respectively, denote the reader/del eter/writer key for context ¢, and PK(i,j) denotes the pairwise
key shared only between entity i and j. The sets R(c)/D(c)/W(c), respectively, denote the set of entities with

read/del ete/write access to context c. Sequence number usage in MAC computation isindicated in the SEQ column:
G means that the global, context-independent sequence number is used, and A means that the array of all context-

dependent sequence numbers are used.

Below, aMAC datainput is considered explicit if it is part of the information explicitly carried in the TLM SP message.
A MAC datainput is considered implicit if it is not carried explicitly in the message. In the last column, MAC author
pertains to the author of the deleter, writer, and hop-by-hop MAC only (the author of the reader MAC isidentical to the

overall author of the message).

RM/DM/WM are used as abbreviations of reader/deleter/writer MAC respectively, and HBH MAC denotes the hop-by-

hop MAC.

The ChangeCi pher Spec protocol isnot included since it is never protected as TLM SP does not support

renegotiation.

ETSI

30

Table 2: Summary of MAC usage

ETSI TS 103 523-2 V1.2.1 (2022-03)

MAC S MAC key-usage per TLMSP sub-protocol MAC calculations Explicit data coverage Implicit data coverage
type E (see note 1)
Q |Application Alert Hand- Generation | Verification
Container type shake Record Container info Author | MAC author
Normal Audit Delete-ind Header |Header Data MACs SEQ ID SEQ
(see fragm RM (DM | WM
note 8) (see note 2)
Reader G RK(c) RK(c) RK(c) RK(c) RK(0) W(c), but only R(c) Y Y Y N N N Y n/a n/a
MAC when (see note 3)
creating or
modifying
message unit
Deleter | A DK(c) n/a DK(c) n/a n/a D(c) D(c) Y Y Y Y N N Y Y Y
MAC (see note 4) | (see (see
note note 5)
4)
Writer A WK(c) PK(i,dest) n/a PK(i,dest) n/a W(c), for W(c), for Y Y Y Y N N Y Y Y
MAC application application (see note 4) | (see (see
data data note note 5)
containers, containers, 4)
R(c) for audit |dest for
containers, audit and
and all alert
entities for containers
alert
containers
HBH G PK(i,i+1) PK(i,i+1) PK(i,i+1) PK(i,i+1) | PK(,i+1) All entities All entities Y Y Y Y Y Y Y N Y
MAC (see (see note 4) | (see (see
note note note 6)
7 4)
NOTE 1: Only entities that are currently participating in the session, see clause 4.3.8.
NOTE 2: The data fragment includes the explicit IV, which in turns always explicitly includes the author's entity ID and implicitly the author's SEQ. Thus, the author identity is always explicitly
included in the reader MAC and the author SEQ is implicitly included.
NOTE 3: Covers the unencrypted plaintext of the payload, before encryption was applied.
NOTE 4: Covers the encrypted value, after encryption was applied.
NOTE 5: Since the author SEQ is input to the reader MAC (2), and the reader MAC is input to this MAC, the author SEQ is implicitly input also to this MAC.
NOTE 6: While the entity ID of the MAC author is neither explicitly nor implicitly included in all cases, the MAC key used is unique to MAC author.
NOTE 7: For records composed of one more containers, the hop-by-hop MAC uses the same global sequence number value as that used by the first container of the record.
NOTE 8: MACSs do not cover the hbh_i d header-field.

ETSI

31 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.2.4 Container format

For Appl i cati on and Al er t protocols, the container format shall be defined asin the present clause. The "payload"”
(or fragment) part of the container shall have atype that varies depending on whether the content is unprocessed
plaintext, compressed plaintext or protected ciphertexts. This last type is ready for submission to the TCP layer.

struct {
uint8 context _id;
uint16 fl ags;

sel ect (flags & 0x8000) { /* Check if I-bit =1 */
case true: struct {
uint8 e_id;
select (flags & 0x4000) { /* Check if Dbit =1 */
case true: struct {
uint8 src; /* originator of delete nessage units */

uint1l6 del _c; /* delete count */
case false: struct { }; /[* enpty */

} mi hfo;
case false: struct { }; /* enmpty */

}
uint16 | ength;
sel ect (TLMSP_internal _layer) {
case TLMSPPI ai nText: opaque;
case TLMSPConpressed: opaque;
case TLMSPC pher Text: Cont ai ner edFragment;
} fragnent;
} Contai ner;

The value of | engt h shall be the octet length of f r agment .

425 Plaintext record format

The plaintext record, following confirmed server support of TLMSP, shall be defined as in the present clause:
opaque Hopl O 4] ;

struct {
Cont ent Type type;
Pr ot ocol Ver si on version;
uint1l6 tot_Ilength;
select (tlnsp_server_support_confirned) {
case true: Hopl D hbh_id;

case false: struct { }; [* enpty */
h
select (type) {
case 0x15, 0x17: /* Application, Alert */
Cont ai ner containers[tot_length - 4];
case 0x14, O0x16: /* ChangeG pher Spec, Handshake */

opaque fragment[tot_length - 4];
b
} TLMSPPI ai nText ;

Prior to having observed the Ser ver Hel | o,t ot _I engt h isthelength of f r agnment for all protocols as no
containers are used and no hbh_i d isused.

Followingthatt | msp_server _support _confirmed isverified to betrue (i.e. following receipt of a
Ser ver Hel | o containing the TLMSP extension), for the Appl i cati on and Al ert protocols,t ot _| engthis
the length of hbh_i d (i.e. 4 octets) plusthe total length of all the containers and can be calculated as:

tot _length = 4 +
>[5 + c.length + ((c.flags & 0x8000) ? 1 : 0) +
((c.flags & 0x4000) ? 3 : 0)]

where the sum istaken over all the containers, ¢, inthe cont ai ner s vector, and for the ChangeCi pher Spec and
Handshake protocols, t ot _| engt h isfour plusthe length of f r agnent .

NOTE: Thisensuresthat the header part (t ype, version, tot _| ength)iscompatible on record-level
with that of IETF RFC 5246 [1].

ETSI

32 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.2.6 Compressed record format

The present document does not specify use of compression for reasons discussed in annex H and any proposed
compression method other than nul | shall be rejected by the TLM SP version defined herein. However, for possible
future extensions, a compressed record format is defined in the present clause:

struct {
Cont ent Type type,;
Pr ot ocol Versi on version;
uint16 tot_| ength;
sel ect (tlmsp_server_support_confirmed) {
case true: Hopl D hbh_id;
case false: struct { }; /* enmpty */

H
sel ect (type) {

case 0x15, 0x17: /* Application, Alert */
Cont ai ner containers[tot_|length - 4];
case 0x14, O0x16: /* ChangeG pher Spec, Handshake */

opaque fragment[tot_length - 4];
b
} TLMSPConpr essed;

Thisisidentical in structure to TLMSPPI ai nt ext . The differenceisthat the contents of f r agnent , or the contents
of each container'sf r agnment , depending on the protocol, have been been compressed, which will be reflected in their
corresponding length values.

Thevaluet ot _| engt h can be computed using the same approach as for the TLMSPPI ai nt ext structure defined in
clause 4.2.5.

4.2.7 Applying message unit and record protection

42.7.1 General

AsinTLS1.2[1], therecord layer of TLMSP is generally responsible for applying data protection to the sub-protocols
forming the complete TLM SP protocol-suite (the Handshake, ChangeCi pher Spec, Al ert, and Appl i cati on
protocols). In TLMSP, the protection applied at the record layer can conceptually be viewed as composed of four
sub-layers: reader layer, deleter layer, writer layer, and forwarding/record layer, applied in that order, using different
keys. The reader layer applies encryption and integrity protection, whereas the other layers only apply integrity
protection. The result of thislayering is that for payload protection, up to three additional MAC values are typically
added to the basic reader layer integrity protection, creating up to four MAC valuesin total. The exact details of which
MACsto add are defined in clause 4.2.3 and how to compute them is defined in clause 4.2.7.2.

The protected record format shall be:

struct {

Cont ent Type type;

Pr ot ocol Ver si on versi on;

uint1l6 tot_Ilength;

Hopl D hbh_i d;

select (type) {

case 0x15, 0x17: struct { /* Application, Alert */

Cont ai ner cont ai ner s[TLMSPConpr essed. t ot _| engt h-4];
opaque hop_by_hop_mac[Securi t yParanet ers. nac_| engt h] ;

case 0x1’4: /* ChangeG pher Spec */
opaque fragment [TLMSPConpr essed. t ot _| engt h-4];
case 0x16: struct { /* Handshake */

opaque fragment[TLMSPConpressed. tot_| ength-4];
opaque hop_by_hop_mac[Securi tyParanet ers. mac_| engt h] ;

}s
} TLMSPG pher Text ;

ETSI

33 ETSI TS 103 523-2 V1.2.1 (2022-03)

where the cont ai ner s field shall be the result of applying the selected TLM SP cipher suite to the corresponding
TLMSPConpr essed. cont ai ner s, on aper-fragment basis. For ChangeCi pher Spec and Handshake
protocols, containers shall not be used and the f r agnment data shall be of the generic type Fr agnment , whichis
defined in a cipher-suite dependent way, as follows:

sel ect (SecurityParaneters. cipher_type) {

case stream Generi cSt reanCi pher;
case bl ock: Generi cBl ockG pher;
case aead: Gener i cAEADG pher ;

} Fragnent;

NOTE: Theformat of aFr agnment is backward-compatible with the format for TLS fragments[1]. In particular,
the TLM SP reader MAC can be identified with the MAC value included in the output format of one of
the three generic formats.

When the fragments are part of acontainer (Appl i cat i on and Al ert protocols) they shall be of type
Cont ai ner edFr agnent , defined as:

struct {
Fragnent c_fragnent [TLMSPG pher Text.container.length]; /* Incl. reader_nmac, |V, padding */
[opaque del et er _mac[SecurityParaneters. mac_| ength] ;]
[opaque writer_mac[SecurityParaneters. mac_| ength];]

} Cont ai ner edFr agment ;

The value of TLMSPCi pher Text . t ot _I| engt h shall be computed by adding the following terms:
. Thelength of hbh_i d (i.e. four octets).
. The sum of the per-container values:

- TLMSPCi pher Text . cont ai ners. | engt h, which shall be calculated asin clause 4.2.7.2.2
(including the container header and fragment size, in particular the sizes of the IV, any possible padding,
and the reader MAC).

- The sum of the sizes of: writer MAC (see clause 4.2.7.2.2) if present, deleter MAC (see clause 4.2.7.2.2)
if present.

e Thelength of the hop-by-hop MAC (clause 4.2.7.2.3).
4.2.7.2 MAC generation

42721 General
An overview of the MACs used for message units and recordsis provided in clause 4.2.2.2.

For AEAD ciphers such as GCM, the integrity mechanism included in the cipher mechanism shall be used as the reader
MAC. Thereader MAC value shall for Appl i cat i on and Al er t protocols be included inside the

TLMSPCi pher Text . cont ai ners. fragnent. c_fragment field, or otherwise, inthef r agnment field of the
message, in the same way MACsareincluded in TLS 1.2 [1].

42.7.2.2 Reader, deleter and writer MACs

42.7.22.1 Container message units

For protocolsthat use containers (Al ert and Appl i cat i on), the MAC generation schemes defined in the present
clause shall be used.

For generic stream and block ciphers (using a standalone MAC), for each
TLMSPConpr essed. cont ai ners. f ragnent the corresponding reader and writer MAC values shall be
computed as follows:

MAC(mac_key, mac_input);

ETSI

34 ETSI TS 103 523-2 V1.2.1 (2022-03)

where:
mac_i nput = seq_num || TLMSPConpressed. containers.flags ||
[TLMSPConpr essed. contai ners. minfo] ||
length || data || [e_id]
where in turn:

M AC shall be the message authentication al gorithm of the selected cipher suite.

mac_key shall in al cases be the reader key for the reader MAC. For the deleter and writer MAC, there are
two cases. For Appl i cat i on protocol containers that are not audit containers, the key shall be the deleter
and writer key, respectively. The key used for the reader, deleter, and writer MACs shall furthermore be the
one applicable for the current context (asdefined by i = TLMSPConpr essed. cont ai ner. ct xt _i d)
and for the direction of transmission/reception.

EXAMPLE: Themac_key isclient _to_server_witer_mac_key_ i (definedin clause4.3.10.5) for

awriter MAC on an application data container related to context i in the client-to-server direction,
computed by an entity with write access.

For Appl i cat i on protocol audit containers, and, for Al ert protocol containers, the key for the
writer MAC shall be the (context-independent) MAC key shared only with the destination end-
point, i.e. correspondingtoel_t o_e2_mac_key, asdefined in clause 4.3.10.4, where e2 isthe
destination end-point. There shall be no deleter MAC for these type of messages.

seq_num shall be as determined in clause 4.2.2.3, specifically, withn_ct xt being equal to the total number
of contextsin the session:

- for areader MAC:

" when generating: thevalueseq_t x;

" when verifying: thevalueseq_r x[k] , wherek isthe MAC author.
- for awriter or deleter MAC:

L] when generating: seq_num = seq_tx_C[0] || seq_tx_C1] || ...]|
seq_tx_(Cn_ctxt-1];

L] when verifying: seq_num = seq_rx_C k] [0] || seq_rx_Ck][1] || -.-|]
seq_rx_(k][n_ctxt-1], wherek isthe MAC author.

length shall be a 16-bit unsigned integer and:

- when computing areader MAC value, it shall be assigned the value
LR = TLMSPConpr essed. cont ai ners. | engt h;

- when computing a deleter or writer MAC value, it shall be assigned the value
LW= LR + SecurityParanmeters.record_iv_length +

SecurityParanet ers. paddi ng_|l ength + SecurityParaneters. mac_I| engt h with
LR as above.

data shall be:
- when computing the reader MAC: TLMSPConpr essed. cont ai ners. f ragnent ;

- when computing the deleter MAC: TLMSPCi pher Text . cont ai ners. fragnent. c_fragnent,
(which includesthe 1V, padding and the reader MAC);

- when computing the writer MAC: TLMSPCi pher Text . cont ai ners. fragnent. c_fragnent
(which includes the inputs same as the deleter MAC, but not the deleter MAC itself).

the optional entity ID, e _id, shall be the entity ID of the MAC author and shall be present only when
computing or verifying the deleter and writer MAC.

ETSI

35 ETSI TS 103 523-2 V1.2.1 (2022-03)

Thereader MAC is calculated based on the compressed plaintext, before encryption. However, the deleter and writer
MAC shall be calculated based on the result after reader security processing. Thus, the value of

TLMSPCi pher Text . cont ai ner s. | engt h shall be updated after adding the reader MAC and performing other
security processing to include the lengths of the IV, any possible padding, and the reader MAC itself. This updated
length value is used asinput, LW to the deleter and writer MAC. However, the value of

TLMSPCi pher Text . cont ai ners. | engt h shall not be further updated after calculating and appending the
deleter and writer MAC.

NOTE 1. InTLS, the sequence number isthe first input to the MAC. For TLM SP sub-protocols that use containers,
the sequence number varies for each container. Therefore, placing seq_numas the fourth input allows
the three first input fields to be a fixed prefix for al containersincluded in the record.

For AEAD transforms, following the AEAD interface specification of [3], the plaintext input, P (to be encrypted and
authenticated), shall consist of the dat a value as defined above. The so-called Additional Authenticated Data, AAD,
(not to be encrypted) shall in the case of reader MAC consist of:

AAD = seq_num || TLMSPConpressed. containers.flags ||
[TLMSPConpr essed. contai ners. minfo] || |ength,

and for the writer and deleter MAC, AAD shall be the sameasnac_i nput .

The actual computation of stand-alone MAC values (i.e. other than the first reader MAC) is, in the case of AEAD,
transform-dependent. MACs of AEAD transforms may also require an IV. See clause A.3.2 for the pre-defined AEAD
transform.

42.7.2.2.2 Record message units

For message units that do not use the container format, only reader MAC values shall be computed, and the details of
clause 4.2.7.2.2.1 shall apply with the following changes.

The input shall be;

mac_i nput = seq_num || TLMSPConpressed.type || TLMSPConpressed. version ||
TLMSPCompr essed. tot _| ength ||
TLMSPConpr essed. f ragnent .

When using AEAD transforms, the AAD, (not to be encrypted) shall consist of:

AAD = seq_num || TLMSPConpressed.type || TLMSPConpressed.version ||
TLMSPConpr essed. t ot _| engt h.

4.2.7.2.3 Hop-by-hop MAC
ThisMAC shall cover the entire record excluding the hop-by-hop MAC itself.

Each entity maintains a concept of who its upstream neighbour and downstream neighbour are for each direction of
communication (client-to-server and server-to-client). In agiven direction, an entity's upstream neighbour is the next
middlebox upstream who is participating (see clause 4.3.8.2.2 for the notion of participating). If thereis no such
middlebox, the upstream neighbour is the upstream endpoint (or is non-existent if the entity is the endpoint that
transmitsin that direction). Likewise, that entity's downstream neighbour is the next middlebox downstream whose
current state is participating. If there is no such middlebox, the downstream neighbour is the downstream endpoint (or is
non-existent if the entity isthe endpoint that receivesin that direction).

When generating a hop-by-hop MAC for arecord that is prepared to be transmitted, an entity shall use the pairwise key
it shares only with its current downstream neighbour (with neighbour as defined above), and derived via the definitions
of clauses 4.3.10.3 and 4.3.10.4 (for non-AEAD transforms, theel to_e2 nac_key shall be used between
transmitting entity e1 and downstream entity e2).

Similarly, when verifying a hop-by-hop MAC for arecord being received, an entity shall use the pairwise key it shares
with its current upstream neighbour (for non-AEAD transforms, theel t o_e2 mac_key shall be used between
upstream entity el and receiving entity e2).

The processing shall be asin clause 4.2.7.2.2.1 with the following changes.

ETSI

36 ETSI TS 103 523-2 V1.2.1 (2022-03)

The MAC input shall be:

mac_i nput = seq_num || TLMSPC pher Text.type || TLMSPC pher Text.version ||
TLMSPCi pher Text . tot _| ength ||
record_payl oad

where seq_numis chosen as for reader MACs, and wherer ecor d_payl oad is
TLMSPCi pher Text . cont ai ner s when the record is composed of one or more containers, and
TLMSPCi pher Text . f ragnent otherwise.

4.2.7.3 Cipher suite specifics

42.7.3.1 General

All TLMSP cipher suites shall use an initialization vector explicitly carrying at least the one-octet entity identity of the
middlebox that generated or most recently modified the message. The selected encryption 1V shall, for the pre-defined
cipher suites, follow the definitions of annex A.

For protocols using containers, the selected cipher converts TLMSPConpr essed.cont ai ner s. f r agnment
structures to and from TLMSPCi pher Text .cont ai ners. fragnent . c_f ragment structures, and for protocols
not using containers, converts TLMSPConpr essed. f ragnent to TLMSPCi pher Text . fragnent .

The structures for enciphered data are defined for each type of cipher in the following clauses. In these clauses,
cont ent _| engt h refersto:

. the length of the corresponding TLMSPConpr essed. cont ai ners. f ragnment , for protocols that use
containers; and

. the length of the corresponding TLMSPConpr essed. f r agnent , for protocols that do not use containers.

If the cipher suiteis TLMSP_NULL_W TH_NULL_NULL, then security processing consists of the identity operation
(i.e. the datais not encrypted and the MAC length is zero for reader and writer MACS). If a cipher suite of type
TLMSP_X W TH_NULL_ Y isused, where X and Y are any non-null cryptographic transforms, then the data shall not
be encrypted, but a reader MAC of non-zero length shall be present, and depending on the MAC a gorithm, potentially
also anonce.

4.2.7.3.2 Null or stream cipher

In contrast to TLS, all TLMSP stream ciphers shall use an explicit IV. This allows middleboxes to modify/insert/del ete
containers.

struct {
opaque record_| V[SecurityParaneters.record_iv_| ength];
stream ci phered struct {
opaque content[content_| ength];
opaque reader_mac[SecurityParaneters. mac_| ength];

H
} GenericStreanC pher;

Therecord_IV andther eader _nac shal be created prior to encryption. The encryption shall then be performed,
using the stream cipher to encrypt the cont ent and ther eader _nac asdefined in IETF RFC 5246 [1].

The length of Gener i ¢St r eanCi pher is:
SecurityParanmeters.record_iv_length + content_length +
SecurityParameters. mac_| engt h.
4.2.7.3.3 Generic block cipher
struct {

opaque record_| V[SecurityParaneters.record_iv_| ength];

bl ock- ci phered struct {

opaque content[content_| ength];
opaque reader_mac[SecurityParaneters. mac_| ength];

ETSI

37 ETSI TS 103 523-2 V1.2.1 (2022-03)
ui nt 8 paddi ng[paddi ng_I| engt h] ;
ui nt 8 paddi ng_| engt h;
} Ge%iari cBl ockC pher;
Thepaddi ng and paddi ng_I| engt h shall be as specified in clause 6.2.3.2 of IETF RFC 5246 [1].
The length of Generi cBl ockCi pher is:

SecurityParaneters.record_iv_length + content_length +
SecurityParanmeters. mac_|l ength + padding _length + 1.

42.7.34 AEAD ciphers

The AEAD transform defined in the present document use a combination of explicitly signalled and locally derived
valuesto formthelV.

struct {
opaque record_nonce[SecurityParanmeters.record_iv_|ength];
aead- ci phered struct {
opaque content[content_length + D + SecurityParaneters. mac_| ength];

} Genéri CAEADC pher ;

Thereader MAC isincluded inthe cont ent field directly by the AEAD transform, see TLS 1.2 (IETF RFC 5246 [1]),
clause 6.2.3.3. The value D corresponds to padding and other overhead added by the AEAD transform in use.

The length of Gener i cAEADCI pher is:

SecurityParanmeters.record_iv_length + content_length + D +
SecurityParaneters. mac_| engt h.

4.3 The Handshake protocol

43.1 Overview

4311 General

The cryptographic parameters of the session state are produced by the TLM SP Handshake protocol, which operates
on top of the TLMSP record layer. When a TLM SP client and server first communicate, they agree on a protocol
version, the number of contexts and their purpose(s), the middleboxes granted access privilege level, and the
cryptographic agorithm suite to use. The TLMSP Handshake protocol generally involves the following steps (asin
standard TLS, certain steps, marked by * in Figure 6 may be omitted if the information is already known):

o Exchange of:

- Hello messages to establish which contexts to use, propose agorithms and middleboxes, random values,
authentication methods, and possible indications of session resumption.

- Certificates (or other credentials) and cryptographic information to allow the client, server and
middleboxes to authenticate themsel ves.

- Necessary cryptographic parameters. The server chooses one cipher suite that liesin the intersection of
those supported by the client and the server. Since, except for manipulations of extensions to the
Cl i ent Hel | o, middleboxes shall typically not engage in the handshake before observing the
Ser ver Hel | o, the server should be pre-configured with knowledge of the cipher suite support of al
the middleboxes in the middlebox list and choose a secure cipher suite in the intersection of those
supported by also all middlieboxes. Alternatively, the server may propose a secure and mandatory-to-
support cipher suite.

e Agreeon keys shared between the client and server endpoints and between middleboxes and endpoints.

. Mutual authorization of middlebox access privilege levels by providing key-shares from both client and server.

ETSI

38 ETSI TS 103 523-2 V1.2.1 (2022-03)

e Allow entitiesto verify that their peer(s) have calculated the same security parameters, including the list of
middleboxes and their respective permissions requested, and that the handshake occurred without tampering
by unauthorized parties.

The TLMSP handshake shall use a TLM SP extension added to the Hel | 0 messagesin the TLS handshake to agree on
the authorized middleboxes and the contexts. An additional Handshake message, TLMSPKeyMat er i al , shall be
used to grant access rights to a middlebox by sending the necessary contribution(s) for that middliebox to derive the
corresponding cryptographic keys.

Each middlebox shall receive such a contribution from both client and server to grant a particular accessright to a
particular context; knowledge of a contribution from only one endpoint does not weaken the level of security of the end-
to-end agreed session. The client and server shall send a TLMSPKey Mat er i al message to each middlebox
participating in the connection. A contribution shall not be present in the message destined to a particular middlebox if
the endpoints agreed to withhold the corresponding access permission to the context from the middlebox. Each
middliebox shall transform the TLMSPKey Mat er i al message destined to it into a TLMSPKey Conf message before
forwarding it to the next entity in order to provide the endpoints with key confirmation, i.e. providing cryptographic
proof to an endpoint that all middleboxes have received their shares from the other endpoint, before the data session
starts. This prevents an endpoint from unilaterally removing a priori agreed access rights from a certain middlebox.
TLMSP shall aso add cryptographic verification messages (MooxFi ni shed) of the handshake with each middlebox.

Until the first ChangeCi pher Spec message, there shall only be the single context with thereservedct xt _id = 0
in use, which at that point shall not use any protection (the cipher suite shall be equivalent to

TLMSP_NULL_W TH_NULL_NULL, but without any explicit | V). Application data shall not be sent until after the
associated contexts have been agreed and the handshake has fully completed. After this, a cipher suite with a non-
NULL integrity algorithm shall always be selected. The currently defined cipher suites are defined in annex A.
Handshake and ChangeCi pher Spec messages shall not be transmitted in any other context than context zero.

The signalling diagram below assumes that the middlebox configuration and discovery of clause 4.3.2 has been
completed and that the server supports TLMSP, which it shall indicate by inserting the TLMSP extension, TLMSP
(including middlebox list, L), intoits Ser ver Hel | o as acknowledgement of the presence of the same extension in the
Cl i ent Hel | 0. When this extension is absent, the fallback mechanisms of clauses C.1 or C.2 may be used.

CLI ENT M DDLEBOX 1 o M DDLEBOX N SERVER

CientHello(TLMSP(L))
------------ R D G O e
Server Hel | o(TLMSP(L))
Certificate*
CertificateRequest*
TLMSPSer ver KeyExchange
Ser ver Hel | oDone
R O------------- O--------mmm- - O---mmmmmmm e
MooxHel | o
MooxCertificate**
<MooxCertificat eRequest*

<MyoxKeyExchange>
MooxHel | oDone
e O------------- O-------------- R R R >
MooxHel | o
MooxCertificate**
<MooxCerti fi cat eRequest *
<MioxKeyExchange>
MooxHel | oDone
R O------------- Xemommmmmmao - (o R e R >
MooxHel | o

MooxCertificate**
<MooxCerti fi cat eRequest *
<MioxKeyExchange>
MooxHel | oDone
S Xemmmmmmmmme (R [R e >

Certificate2Moox[ML] *
Certificate2Mox|.]*
Certificat e2Moox[Mn] *
Certificate*

C i ent KeyExchange
CertificateVerify*
CertificateVerify2Mox[M] *
CertificateVerify2Mox[.]*
CertificateVerify2Mox[M]*

ETSI

39 ETSI TS 103 523-2 V1.2.1 (2022-03)

------------ o R B

TLMSPKeyMat eri al [C, ML] TLMSPKeyConf [ML]

------------ D R e o e T T
TLMSPKeyMat erial [C, .} TLMSPKeyConf [..}

------------ [D G o T b
TLMSPKeyMat eri al [C, Mn] TLMSPKey Conf [Mn]

------------ (o e R
TLMSPKeyMat erial [C, S]

------------ [e e o e e R

TLMSPKey Conf [Mh TLMSPKeyMat eri al [S, Mn]

R O------------- O------------ - R e T TR
TLMSPKeyConf [..} TLMSPKeyMaterial [S, ..}

e O------------- Xemommmmmm oo O-----mmmmm oo
TLMSPKey Conf [ML] TLMSPKeyMat eri al [S, ML]

e Xemmmmmmm o O----------m- - O-----mmmmmm oo
TLMSPKeyMat erial [S, C]

R O------------- O-------------- (o R T T

ChangeCi pher Spec
Fi ni shed
------------ (o e s e R R R

MooxFi ni shed[C, ML] MooxFi ni shed[ML, S]

———————————— D e L o T
MooxFi ni shed[C, ..] MooxFi ni shed[.., §]

------------ [e G o e
MooxFi ni shed[C, Mh] MooxFi ni shed[Mh, §]

———————————— (o e s L O e T T T

ChangeCi pher Spec

Fi ni shed
S O------------- O-------------- O------mmmmmm oo

MooxFi ni shed[Mh, C] MooxFi ni shed[S, Mh]
R [O---------mm- - R R T T

MooxFi ni shed[.., C] MooxFi ni shed[S, ..]
S O------------- Xemmmmmmm oo O------mmmmm oo

MooxFi ni shed[ML, C] MooxFi ni shed[S, ML]
S Xemmmmmmmmm O-------------- O------mmmmm oo

Application Data Application Data
S Xemmmmmommm Xemmmmmmmm o O LR >

Figure 6: Handshake, optional messages are suffixed by *,
messages which could occur in zero, one, or two directions are suffixed by **

In Figure 6, x indicates that the middlebox inserts data and forwards the message; o indicates the middlebox is able to
read/process content, but does not modify it, and then forwards the contents. A Handshake message may always be
sent as a standal one handshake record, and where possible may instead be sent piggy-backed according to

clause 4.3.1.2.

For middleboxes, their MooxHel | o, MboxCerti fi cat e, MooxKeyExchange and MboxHel | oDone messages
may be sent piggy-backed toward the client, but shall be sent beginning with a new record toward the server. Also,
these messages shall have identical content both when sent to the server and to the client.

If sent, the MooxCerti fi cat eRequest shall be sent or piggy-backed only towards the client. When used,
MooxCerti fi cat eRequest requests client authentication by a middiebox.

TheMboxCerti fi cat eRequest definedin clause 4.3.6.3 can be sent independently of whether the server sends a
Certificat eRequest . Moreover, the client can in response provide different certificates to different middleboxes.
For each middlebox to which the client sends a certificate, the client shall also send (or piggy-back) a
CertificateVerify2Mox message asdefined in clause 4.3.6.7.

NOTE: From Figure 6, it can be seen that TLM SP uses a special TLMSPSer ver KeyExchange instead of the
standard Ser ver KeyExchange in IETF RFC 5246 [1]. Additionally, the order between
Certificat eRequest andthe key exchangeisreversed compared to TLS. This enables
authentication of the certificate requests and protects against unauthorized harvesting of the client's
certificate, see clause 4.3.10.1 for details.

ETSI

40 ETSI TS 103 523-2 V1.2.1 (2022-03)

The optional piggy-backing is described in more detail in clause 4.3.1.2. TLMSPKeyMat eri al [M] denotesa
message containing middlebox key shares from an endpoint directed to middieboxM and TLMSPKey Conf [M]
denotes a middlebox's key confirmation message from middlebox ei to an endpoint. As seen, these are piggy-backed
(and aggregated) into forwarded TLMSPKeyMat er i al messages. MboxFi ni shed[ei , ej] isaverification
message of the handshake exchanges dependent on messages previously exchanged between (or available to) both
entitiesei and ej , except when bothei and ej are middleboxes, in which case no MooxFi ni shed[ei , €]]
message shall be present. For messages originating at a middlebox and potentially sent to both endpoints, messages
prefixed by < (or suffixed by >) are sent only in the indicated direction. Messages embraced inside <...> are sent in
both directions, but possibly with different content. Middlebox messages shown above bi-directional signalling arrows,
but without any of these angle-brackets, are sent in identical copies to both endpoints.

For the definition of the Handshake protocol, message structures that are not defined in the present document shall be
as defined in and unchanged from structures of the same name in clauses 7.3 and 7.4 of IETF RFC 5246 [1].

The signalling flow of Figure 6 should be followed since it has the property that no middlebox starts to send messages
until after the Ser ver Hel | oDone has been observed. It is only at this point that all entities can be assured that the
server really supports TLMSP so that none of the fallbacks of clause C.1 or C.2 are necessary. Also, itisonly at this
point that all entities know whether any additional middleboxes could enter into the session via dynamic discovery as
defined in clause 4.3.2. If amiddlebox has started to send messages before the above knowledge has been obtained,
thereisin general no guarantee that the handshake succeeds. Nevertheless, clause C.3 describes an alternative flow
which is useful in some scenarios and may be used when it is known that the first on-path middiebox has certain
features, see clause C.3 for details. A general exception to this rule isthat middleboxes may add or manipul ate

TLM SP-specific extensions provided inthe T i ent Hel | 0, see clause 4.3.2 and clause C.2. Thisis safe since the
server ignores unknown extensions.

4.3.1.2 Piggy-backing of handshake messages

Piggy-backing intuitively means that a middlebox appends a Handshak e message with itself as origin to an already
in-transit record comprising aHandshake message that originates from an upstream endpoint. More formally, the
piggy-back of handshake information by middleboxes shall be done as follows.

Assume without loss of generality that a middliebox, MBa, wishes to piggy-back information in a message from server
to client, such asin the server'sresponse to the Cl i ent Hel | 0. This server message isin current TLS implementations
and typically consists of several individual messages combined into one record R:

+ +
| record header (type, version, etc)| ML | M| M3 | M4 |
+ +

whereMlisaServerHel | o,M2isaServerCertificate, M3isaServer KeyExchange and M4 isa
Ser ver Hel | oDone. Type will have the value 0x 16, identifying the message(s) as belonging to the Handshake
protocol. The message M1 has the form:

B Fommmmaaaa B - ~+
| nmsg_type | length | nessage data |
e TS T ~+

wherensg_type = 0x02, signifyinga Server Hel | 0. Similar sub-structures are used for M2, M3 and M4,
each with adistinguishing nsg_t ype.

Suppose MBa wishes to piggy-back a MooxHel | o (VH) by appending itinto R. To thisend, MBashall create a new
record, R', asfollows:

+ + +
| record header (type, version, etc)| ML | M| M3 | MA | MH |
+ + +

wheret ot _| engt h shall have been increased by the length of MH and where MH shall follow the format of a
MooxHel | o asdefined in clause 4.3.6.1. In particular, MH shall have format

o e~ fome e oo ~+

| msg _type | length | nessage_data |
e Fomm e . ~+

ETSI

41 ETSI TS 103 523-2 V1.2.1 (2022-03)

wherenmsg_t ype = 0x28 (MboxHel | 0) and | engt h is calculated in accordance with the total data length.

The format of MooxHel | o and other middlebox specific Handshak e messages specifies that the first part of
nmessage_dat a isthe middliebox ID. This way, identification of which middlebox that performed the piggy-backing
is straightforward at the receiving endpoint. Also, the original content (from the server) is easily identified due to
having distinct msg_t ype valuesin M1-M4 which are never re-used by a middlebox-originated Handshake
message.

It isalso straightforward for a middliebox MBato piggy-back further messagesinto R (appending them at the end of the
record). Also, it is straightforward for a second middlebox, MBb, to perform further piggy-backing, by appending to the
record R' produced by MBa. A middliebox that piggy-backs a message part to a protected handshake record shall re-
calculate the single (reader) MAC value. This MAC value shall be based on the new (increased) total record length
value. The middlebox shall then re-encrypt the record, setting itself as author (viathe entity ID inthe IV).

Use of piggy-backing shall be optional and when used, shall be according to the following principles:
a) Piggy-backing shall not be applied to messages occurring after ChangeCi pher Spec.

b) Piggy-backing shall not be performed if it resultsin data of atotal length that needsto be split into two or
more records. Instead, a new, separate record aligned with the start of the new message shall be generated.

c¢) Piggy-backing shall only affect the record into which piggy-backing is performed.
d) Piggy-backing shall be append-only as described above.

NOTE: Thereplacement of a TLMSPKeyMat er i al message with a corresponding TLMSPKey Conf message
described in clause 4.3.7.3 is not considered to be piggy-backing, nor is the replacement of an
MboxFi ni shed message from an endpoint to a middliebox with the MboxFi ni shed message from
that middlebox to the other endpoint described in clause 4.3.6.10.

4.3.2 Middlebox configuration, discovery

4321 General

This clause describes aternatives of how to configure or establish the M ddl eboxLi st with the complete set of
middleboxes. There are two main cases: static pre-configuration and dynamic discovery.

Static pre-configuration shall be supported. Dynamic discovery should be supported.

For the purpose of discovery, the M ddl eboxLi st inthe TLMSP extension of theCl i ent Hel | o shall contain at
least one but may also contain two lists of middieboxes. Thefirst list, denoted Ml _i , shall always be present and shall
include those middleboxes a priori known to the client: via static pre-configuration, due to dynamic discovery of
middleboxes during previous TLM SP sessions, or, combinations thereof. The order of the middieboxesinm _i shall
be according to the overall network topological order and each middiebox shall occur only one timein the list.

NOTE 1: Nothing precludes that the same physical server hosts two or more virtual middlebox functions.

If, and only if, middleboxes are dynamically discovered (and accepted), thisshall resultinanew C i ent Hel | o as
described below. The TLMSP extension of thissecond Cl i ent Hel | o shall contain two lists of middleboxes: an
identical copy of M _i asabove, followed by a second list, M _d, containing a so middleboxes that were dynamically
discovered.

NOTE 2: This creates cryptographic binding to the set of middlieboxes that were initially proposed. Thisis obtained
viainclusion of the origina list inthe Fi ni shed verification hash of the second handshake.

Thelists m _i and m _d shall contain all middleboxes (including aso dynamically discovered ones) according to the
overall network topological order.

ETSI

42 ETSI TS 103 523-2 V1.2.1 (2022-03)

4322 Static pre-configuration

In the case of static pre-configuration, the client shall be manually pre-configured with the complete set of middleboxes
asper theM ddl eboxLi st defined in clause 4.3.5. Thelist shall be arranged in network-topological order and each
middlebox in the list shall occur only once. All the middieboxesin theinitial list shall have thei nsert ed field set to
"static".

NOTE: Itisleft to the implementation to add robustness in the form of "loop avoidance" among the middleboxes,
i.e. to detect if one and the same middlebox occursin several places of thelist.

The client shall have obtained the IP address of the first-hop middlebox. How thisis obtained is out of scope of the
present document. Each middlebox shall know or shall be able to obtain the 1P address of the next-hop middiebox and
the last middlebox shall also be able to obtain the | P address of the server. How thisis done is out of scope of the
present document.

EXAMPLE: IP address retrieved by DNS lookup of the middlebox address (name) field.

The client shall initiate the handshake by sending the Cl i ent Hel | o including the TLM SP extension (including a

M ddl eboxLi st) to the first middliebox. Before each entity (including the client itself) forwardsthe i ent Hel | o
to the next entity, it shall set theprevi ous_entity_id field of the middiebox listtoitsownentity i d, for
usage as described in clause 4.3.2.3.3. The process shall be repeated at each middlebox, setting up a transport
connection with the next middlebox, until atransport connection is eventually established between the last middlebox
and the server. Messages from server to client shall be handled in the reverse network-topological order, viathe
middleboxes.

When the server receives the client's middlebox list, it shall decide if to authorize the proposed middleboxes and also
their suggested access privilege level to various contexts. If a middiebox cannot be authorized by the server, the server
may reject the session, or, respond with a subset of the client's proposed middlieboxes in its own middlebox list, and it is
then up to the client how to proceed. Optionally, the server may return a middiebox list to the client, with the attribute

i nsert ed settothevalue" f or bi dden" for this middlebox as described in clause 4.3.2.3.2, indicating that the
client should not include this middlebox on future sessions.

4.3.2.3 Dynamic discovery

43231 General
In this case, the client and/or server does not know all middleboxes to be potentialy involved in the connection.

EXAMPLE: One of the known (pre-configured as in clause 4.3.2.2) middleboxes or the server can request that
one or more additional client-unknown middleboxes are added to the M ddl eboxLi st .
Additionally, atransparent middlebox can request its own addition. To do this, the client uses
dynamic discovery.

It is at the discretion of the endpoints whether to accept additional middleboxes that were not statically pre-configured.
There are two sub-cases to consider: non-transparent and transparent middleboxes, referring to whether the middleboxes
are directly visible on the IP layer.

If adynamically discovered middlebox isrejected, it may beincluded inthem _d list, withthei nsert ed attribute
setto" f or bi dden" . Thisallows verification of the rejection without granting privileges to the rejected middlebox.

When an additional dynamically discovered middiebox is proposed (by the middiebox itself or the server), the
corresponding entry in the middlebox list extension shall be populated by information about which contexts the
middlebox isto be authorized to access. The functionality provided by the middlebox shall be populated into the
pur pose field of the TLMSP extension, as defined in clause 4.3.5.

Whenever a middiebox mwishes to add another middlebox immediately downstream from m mshall set up atransport
connection to the new middlebox and forward the handshake messages over the connection to the added middlebox.

Discovery of transparent and non-transparent middleboxes may be combined with each other as defined in
clause 4.3.2.4.

ETSI

43 ETSI TS 103 523-2 V1.2.1 (2022-03)

If additional middleboxes are dynamically discovered asthe Cl i ent Hel | o propagates toward the server, the list of
(proposed) middlieboxes received at the server will differ from the list originally included by the client. If it turns out
that the server does not support TLM SP, the client may chose to accept fallback to TLS by one of the mechanisms
defined in annex C. This fallback would encounter problems if the client's list of which middleboxes to include does not
agree with that received at the server (for example, the computation of the Fi ni shed verification hash would fail).
Therefore, the first middlebox to detect the server's non-support for TLMSP, i.e. the middlebox closest to the server,
shall send aHandshake message of type Ser ver Unsuppor t and shall include, inthe i ddl ebox_i nf o field,
the complete list of middieboxes that it previoudly forwarded to the server, see clause 4.3.6.8. Other middleboxes shall
just forward this message unless they consider it to disagree with their own view of which middleboxes that took part of
the discovery, in which case such middiebox may additionally send itsown Ser ver Unsupport message. Thisallows
the client both to compute the correct Fi ni shed verification hash, as well as to make a decision on whether to accept
the additional middieboxes to take part in a TLS fallback.

It isagain left to implementation to add robustness in the form of "loop detection” during dynamic discovery.

Asdefined in clauses 4.3.2.3.2 and 4.3.2.3.3, dynamic discovery leads to the client restarting the handshake by sending
anew (modified) Cl i ent Hel | o. If amiddlebox detects that transparent middleboxes wish to join the session, or, that
a non-transparent middlebox is proposed by another entity, the middlebox shall not engage in a TLM SP specific
handshake until after it observesthe Ser ver Hel | o following the second Cl i ent Hel | o.

4.3.2.3.2 Non-transparent middleboxes
This clause applies to use cases where middleboxes visible on the | P layer are to be added.

EXAMPLE: An enterprise's security policy mandates traffic being routed via a data-leakage prevention
function. Such middleboxes can in general not make their own presence known during the
handshake since the handshake cannot be assumed to be passing through such middleboxes. The
(enterprise) server is however likely to be aware of such middleboxes.

Therefore, when using TLM SP, the server may propose that an additional middliebox or middleboxes are to be added.
When the server receivesthe Cl i ent Hel | o and finds that a I P-routable middlebox is missing from the

M ddl eboxLi st , the server shall return aSer ver Hel | o, including the acceptable middlieboxes from the list in the
C i ent Hel | o, extended by those non-transparent middleboxes that the server wishes to add. The added middleboxes
shall beinserted into the server'slistml _i (asdefined in clause 4.3.5). The server shall assign the additional
middleboxes unique entity identities and shall insert them in correct topological order.

The server's proposed middiebox entries shall havethei nsert ed field set to "dynam c" andthet r anspar ency
field setto "f al se".

The client shall decide whether to accept the proposed middlebox(es) (in the server's middiebox list extension). If so,
the client shall proceed asin clause 4.3.2.2, sending anew Cl i ent Hel | o containing hs_i d (the handshake id) from
the Ser ver Hel | o and both an identical copy of the original middlebox list, aswell asalist of all middleboxes,
including also the discovered and accepted middiebox(es) into thelist M _d as defined in clause 4.3.5. The entries for
the dynamically discovered middleboxes in the discovered list shall have thei nser t ed field set to "dynamic" and the
transparency fieldsetto " f al se". The client shall now reject further middleboxes proposed for inclusion as part
of the new handshake.

If the client does not accept the middlebox with the proposed accessrights, it should send an Al er t of type

m ddl ebox_aut hori zati on_f ai | ur e and the client should close the connection. In this case, the client may
choose to include the proposed middiebox inthe M ddl eboxLi st of the TLMSP extension in future TLM SP session
initiations with the inserted field set to "forbidden™.

ETSI

44 ETSI TS 103 523-2 V1.2.1 (2022-03)

If the server proposed an additional, client-accepted non-transparent middlebox which topologically lies between the
server and the middlebox which wasimmediately before the server in the client'sinitial proposal, the server could
receivethesecond Cl i ent Hel | o over anew TCP connection. In this case, the server should usethe hs_i d (if
required, extended by cl i ent _address, server_address fromthe TLMSP extension) to associate the new
TCP-connection to the same TLM SP session (used to retrieve the correct hash-context for the handshake verification as
defined in clause 4.3.9).

If thesecond Cl i ent Hel | o isreceived over anew TCP-connection, the second Cl i ent Hel | o could be processed
by a new physical server. To alow the new physical server to take over handling of the session, the client shall (as
defined in clause 4.3.5) include adi scovery_ack field in the TLMSP extension (alongside other parameters) to aid
the new server's determination that thisnew Cl i ent Hel | o is associated with dynamic discovery of middleboxesin
an earlier session setup.

The client, as well asthe server, may in the new Hello messages al so request specific cipher suite options for the newly
discovered middleboxes, as defined in clause 4.3.5.

The two paragraphs above shall apply also when replacing "the server" by "a middiebox", and the middliebox shall then
follow the recommendation of clause 4.3.1 and not generate any TLM SP-messages of their own until after the discovery
phase is done.

43233 Transparent middleboxes

This clause applies to use cases involving middleboxes that are not individually visible/routable on the IP layer but
which are still present on the client-server network path.

EXAMPLE: A middlebox function co-located with a default gateway, a firewall, or within a mobile operator
core network is not visible on the IP layer but is present in the client-server path of
communication.

NOTE 1: Inprincipleit could be possible to also pre-configure certain transparent middleboxes similar to the way
described clause 4.3.2.2, if their on-path presence is always guaranteed.

The middlebox is assumed to detect initialization of TLM SP handshakes passing through it, even if the handshake is not
explicitly addressed to the middliebox. Thus the middlebox has opportunity to make its presence known without
assistance from the server. The middlebox can propose its own inclusion by adding itself to the M ddl eboxLi st of
the TLMSP extension of the Cl i ent Hel | 0. This proposal may initialy be done silently towards the client; the
middlebox only forwards the modified C i ent Hel | o toward the server. This usually alows plural transparent
middleboxes to add themselvesto the same Cl i ent Hel | o asit propagates toward the server.

Thus, the client will be informed about all the dynamically added transparent middleboxes asit later receives the
ServerHello. Both server and client may reject any or al of the transparent middleboxes.

A transparent middlebox may intercept the Cl i ent Hel | o (either between the client and the first middliebox, between
two middleboxes, or, between the last middiebox and the server). If the intercepting middlebox wishes to propose its
own addition, it shall add itself tothe M ddl eboxLi st of theclient's TLMSP extension (them _i list as described
in clause 4.3.5), assigning itself a unique entity identity, settingt r anspar ency to"true" and settingi nsert ed
to" dynami c¢". The middlebox insertsitself in the middlebox list according to topological order. The order should be
deduced by observing the current value of pr evi ous_ent i ty_i d inthe middlebox list, indicating the logical entity
identity of the previous hop.

NOTE 2: Thisavoids the need for the middlebox to perform extensive (DNS) look-upsto find the previous entity's
logical identifier and thus the correct topological placement. This holdsin particular when |P addressis
not used asaddr ess of the middleboxes and may also avoid NAT issues.

The middlebox shall aso include information about which contexts it seeks read/del ete/write access to and forward the
modified Cl i ent Hel | o toward the server (addressing it to the next-hop entity/middlebox).

When the server receives the (modified) Cl i ent Hel | o, it shall authorize all middieboxes, including transparent ones
that made their presence known in the modified M ddl eboxLi st asdescribed in the present clause. All middleboxes
shall beincluded inthe M ddl eboxLi st of the Ser ver Hel | o extension, but those transparent middleboxes that
were not authorized by the server shall havetheir i nsert ed attribute set to "forbidden".

ETSI

45 ETSI TS 103 523-2 V1.2.1 (2022-03)

When the client receivesthe Ser ver Hel | o response, it will be able to tell from the attribute fields of the middlebox
list which transparent middleboxes are proposed and which ones the server accepts. The client shall decide whether to
authorize the middleboxes that were accepted by the server. If so, the client shall proceed asin clause 4.3.2.3.2, sending
anew C i ent Hel | 0, now with the server'shs_i d and two middlebox listsin the extension; an identical copy of the
client'sorigina m _i and the second list M _d also including the accepted middleboxes whose entries have the

i nsert ed field setto "dynanmni c" and the transparency field set to "t r ue", as defined in clause 4.3.5. The client and
server shall now ignore and reject further middleboxes that attempt to add themselves as part of the new handshake.

Otherwise, if the client does not accept the dynamically discovered middleboxes, it shall send an aert of type
m ddl ebox_aut hori zation_failure.

NOTE 3: Thisway of handling additional middleboxesimplies that the added middlebox remains
(transparently) on-path for the duration of the session.

4.3.2.4 Combined discovery

43241 Example use case

Figure 7 illustrates an exampl e scenario with one middlebox (ML) pre-configured in the client, as defined in

clause 4.3.2.2 and thusincluded in theinitial M ddl eboxLi st, m _i ¢, of the TLMSP extension in the
ClientHell o.Asthed i ent Hel | o traverses the network, a transparent middlebox, mL, detects the signalling and
wishesto add itself to the TLMSP session. It does thisadding itself tom _i ¢, asdefined in clause 4.3.2.3.3. With
respect to Figure 7, ml addsitself to thelist m _i ¢ before the middiebox ML. Additionally, when the server finaly
receivestheC i ent Hel | o, it detects that a second, non-transparent middlebox, M2, is also desired, which is handled
according to clause 4.3.2.3.2,i.e. M2 isadded to thelist Ml _i s, just after the middiebox ML.

CLI ENT ml ML e SERVER

m_ic = {M}
CientHell o(TLMSP(M _ic))

m_ic'={m} || m_ic
CientHell o(TLMSP(M _ic")

m_is m_ic || {M}
hs_id .

ServerHel | o(TLMSP(hs_id, M _is))

Certificate*

CertificateRequest™

/* signature includes hash of nessages so far */ TLMSPServer KeyExchange

Server Hel | oDone

m _dc = {nml} || m_ic || {M}
ClientHell o(TLMSP(hs_id, m _ic, M _dc, hash(previous_nessages)))

ServerHel | o(TLMSP(hs_id, m _is))
TLMSPSer ver KeyExchange
Server Hel | oDone

...rest of TLMSP handshake as in Figure 6 ...

NOTE: All but the two last messages are not available to M2, because M2 is not on the IP path between client and
server.

Figure 7. Dynamic discovery example

ETSI

46 ETSI TS 103 523-2 V1.2.1 (2022-03)

The optiona alerts are not shown in Figure 7. Setting attributes of the discovered middlieboxes (i.e.i nsert ed =
"dynami c" andtransparent ="true" or"fal se") isasoomitted for simplicity.

Although a new key exchange by the server will become necessary in this case (since M2 has not been in the path
throughout the handshake), the server should still include certificate and key exchange, as it will give the client an
opportunity to authenticate the server during the discovery.

43.2.4.2 Practical considerations

For dynamic discovery of transparent middlieboxes to work in general, and particularly if used in combination with
dynamically discovered non-transparent middleboxes, assumptions (or preferably knowledge) of the network topology
are needed.

Suppose that in the example of clause 4.3.2.4.1, ml liestopologically between ML and M2. While m is transparently on
path between ML and the server, mL could in genera not be transparently present also on the path between ML and M2,
which is the path followed on the second Cl i ent Hel | o and subsequent messages. Clearly, when ml attempts to add
itself to the middlebox list, mL does not yet know that the server will change the IP routing path by adding the non-
transparent middlebox M2. Regardless of whether ml isimmediately after the client or immediately before the server,
there exist cases when an additional non-transparent middlebox addition by the server (or by another middlebox) could
remove mL from the subsequent signalling path.

Dynamic discovery by transparent middleboxes should therefore only take place when the middliebox has strong
assurance that it will remain on path for the rest of the session. How such assurance is obtained is out of scope of the
present document.

4.3.25 Middlebox leave and suspend

Middleboxes may find it necessary, e.g. due to processing load, to step down or step out of an ongoing session. A
middlebox shall aways notify other entities before doing so either by issuing one the TLM SP specific aert

m ddl ebox_suspend_noti fy (clause4.4), or, the MooxLeaveNot i f y message (clause 4.3.8). These messages
shall not be sent prior to handshake completion (all Fi ni shed and MooxFi ni shed messages being verified).

4.3.3 Session resumption and renegotiation

4.3.3.1 Resumption

Aswith TLS 1.2, TLMSP provides an abbreviated handshake to resume a previously established session, refreshing the
keys but keeping the previous cipher suite.

Middleboxes shall not be removed or added as part of resumption negotiation and resumption shall be done using the
same contexts and cipher suite as the original session.

Similarly to TLS 1.2, the server may, in theinitial handshake, indicate a session ID in its hello message, indicating to
the client that the server may be willing to cache the session state for later resumption. (Thissession ID is generally not
the same asthe hbh_i d which may be used in the TLM SP headers, or thehs_i d assigned in the Ser ver Hel | 0.) In
TLMSP, if resumption is enabled, the server shall allocate a session ID. Middleboxes shall obtain this session ID from
the handshake signalling and associate it with the current session. This session ID could be hon-unique among all the
sessions that a middlebox is serving at once. Therefore, the middleboxes shall locally extend the session ID by a client
identity and a server identity conditioned on that the triplets (session ID, client ID, server ID) becomes globally unique
from the middlebox point of view. Any server ID, client ID that enables such unique identification may be used, and it
is out of scope to specify details of the identity selection.

NOTE: Suchclient ID, server ID need to exist, otherwise the middlebox would confuse some TCP sessions
passing throughit.

When a client wishesto resume a session, the session ID isindicated by aclientinitsC i ent Hel | o with the server.
If the server recognizes the provided session ID, it may choose to allow resumption. When allowing session resumption,
the server shall signal the same (own) session ID back toward the client.

ETSI

47 ETSI TS 103 523-2 V1.2.1 (2022-03)

If amiddlebox recognizes the session ID (in client's and server's hello) and is willing to resume the session, it shall
indicate this by adding the same session ID in its hello toward the server and client, otherwise the middlebox's session
ID shall be empty. Session resumption shall be performed if, and only if, the server and all middleboxes indicate the
same session ID for resumption.

TLS also supports a (server-side) stateless resumption via session tickets, [2], if the client indicated support for session
tickets viathe ticket extension to the Cl i ent Hel | 0. The client may therefore attempt to initiate resumption by
including previoudly received tickets, in the handshake toward other entities. The client shall include the server-
associated ticket initsCl i ent Hel | o, whereas the middleboxes tickets shall be included in the middlebox list
extension. Each middlebox shall indicate toward the server, in the standard Hello extension, that it accepts the client's
resumption proposal by copying the same ticket it received from the client when generating its hello messages toward
the server. If the server received positive confirmation (tickets) from all middleboxes, the server may choose to proceed
with resumption. During resumption, the client may also receive renewed tickets, which it may store for future
resumptions of the same session. Issuing of (new) resumption tickets shall be done by the server according to [2],
whereas middleboxes shall use the NewboxSessi onTi cket message of clause 4.3.6.9.

There shall be no exchange of new TLSMPKeyMat eri al or TLMSPKeyConf as part of the resumption, however, the
client, the server and the set of middleboxes shall refresh pairwise and context-specific keys as defined in
clauses 4.3.10.4 and 4.3.10.5.

4.3.3.2 Renegotiation

In TLS 1.2, the client endpoint can initiate a renegotiation of the security parameters by sendinganew Cl i ent Hel | o.
A server endpoint can, in TLS 1.2, request renegotiation by sending aHel | oRequest . The present document does
not allow a corresponding renegotiation for TLMSP, for reasons laid out in clause E.7. A TLMSP endpoint receiving an
indication to perform renegotiation shall issue an unexpect ed_nmessage aert and should abort the connection.

4.3.4 Handshake message types

TLMSP employs the following Hands hake message types:

enum {
hel | o_request (0), client_hello(1l), server_hello(2), certificate(1ll),
server_key_exchange(12), certificate_request(13), server_hell o_done(14),
certificate_verify(15), client_key_exchange(16), finished(20), tlmsp_server_key_exchange(40),
mbox_hel | o(41), nbox_certificate(42), nmbox_certificate_request(43),
certificate_2_nbox(44), nbox_key_exchange(45), nbox_hel | o_done(46),
certificate_verify_2 nbox(47), tlmsp_key_material (48),
tl msp_key_conf (49), server_unsupport(50), new nmbox_session_ticket(51), mnbox_finished(52),
tl msp_del egat e(53), nbox_| eave_notify(54), nbox_| eave_ack(55), nbox_aut h_request (56),
nmbox_aut h_r esponse(57), (255)

} HandshakeType;

For the messageshel | o_r equest (0),client_hello(1),server_hello(2),certificate(1l),
server _key exchange(12),certificate_request(13),server_hell o_done(14),
certificate_verify(15),client_key exchange(16),andfi ni shed(20), clause 7.4 of

IETF RFC 5246 [1] shall apply.

In addition:
e theclient_helloandserver_hel | o messages shal support the extensions defined in clause 4.3.5;
e thehash computation in the Fi ni shed messages shall be computed as defined in clause 4.3.9.

The present document defines the following new Handshake messages. t | nsp_server _key_exchange(40),
nbox_hel | o(41),nbox_certificate(42),nmbox _certificate_request(43),

certificate_2 nbox(44),nmbox_key exchange(45),nbox_hel | o_done(46),
certificate_verify_2 nbox(47),tlmsp_key_material (48),tl nsp_key_conf (49),

server _unsupport (50), new_nbox_sessi o_ticket (51),nbox_fini shed(52),

t1 msp_del egat e(53),nbox_| eave_notify(54),andnmbox_| eave_ack(55).

ETSI

48 ETSI TS 103 523-2 V1.2.1 (2022-03)

Thet | msp_del egat e message and usage is described in clause C.2.3.2. Use of nhox_aut h_r equest and
nmbox_aut h_r esponse isdefined in clause C.3. Details of the other new Handshake messages and extensions
thereto are provided in clauses 4.3.5t0 4.3.9.

4.3.5 TLMSP Handshake extensions

Recall that a TLS extension is defined in [1] as:

enum {
server_nane(0), ..., (65535)
} ExtensionType;

struct {
Ext ensi onType extention_type;
opaque extension_dat a<0..2"16-1>;
} Extension;

TLMSP defines three new TLS handshake extensions to the Hel | o messages, the first in the form of abasic TLMSP
extension with ext ensi on_t ype = 0x24. The other extensions are defined in clause C.2.3. The extension shall
contain aversion indication according to [1], alist of middlieboxes, and information related to the TLM SP session being
negotiated.

For the entities in the list of middieboxes, theentity i d values0Ox00, 0x01, Oxf e, and Oxf f arereserved with
0x01 reserved for the client and Oxf e reserved for the server. Values 0x00 and Oxf f are reserved for other purposes.
A middlebox may be assigned any value in the range 0x02- 0xf d. The list of middleboxes shall be ordered by the
network topology order of the connections established from client to server.

The format for the entries in the TLMSP extension and the associated M dd| eboxLi st shall be as follows:

First, each entity (middlebox or endpoint) shall be identified by an Address value composed of a primary component
and sometimes a secondary component, the format and use of which depend on the type as follows:

. uri - prinmary shal beaURI per [12] with a non-empty authority component. secondar y shall not be
present.

. fgdn - prinmary shal beafully qualified domain name as defined in [13], using the syntax defined in
section 2.1 of [14]. When using TCP, secondar y shall be atwo octet TCP port number per [15], otherwise it
shall not be present.

. i pv4_adr - primary shal beafour octet destination address as defined by [16]. When using TCP,
secondar y shall be atwo octet TCP port number per [15], otherwise it shall not be present.

e ipv6_adr - primary shall beal6 octet destination address as defined by [17]. When using TCP,
secondar y shal be atwo octet TCP port number per [15], otherwise it shall not be present.

. mac_adr - prinmary shall beasix octet MAC address as defined by [18]. secondar y shall not be
present.

enum{ tcp } TransportProtocol;

struct {
enum{ uri(0), fqgdn(1), ipv4_adr(2), ipv6_adr(3), mac_adr(4), (255) } type;
select (type) {
case uri: opaque primary<5..2"16-1>;
case fqgdn: struct {
opaque primary<3..253>;
sel ect (TransportProtocol) {
case tcp: opaque secondary[2];

}s

case ipv4_adr: struct {
opaque primary[4];
sel ect (TransportProtocol) {
case tcp: opaque secondary[2];
b

case i pv6_adr: sfruct {
opaque prinary[16];

ETSI

49 ETSI TS 103 523-2 V1.2.1 (2022-03)

sel ect (TransportProtocol) {
case tcp: opaque secondary[2];
h
H

case mac_adr: opaque primary[6];
b
} Address;
opaque Handshakel O] 4] ;

struct {
struct {
uint8 maj or;
uint8 mnor;
} tlnsp_version;
CipherSuite tlnsp_ci pher_suites<2..2"16-2>;
enum { false(0) , true(l), (255) } server_anon;
Hopl D hbh_i d;
select (is_server_hello) {
case true: struct {
Handshakel D hs_i d;
Si gnat ur eAndHashAl gori t hm supported_si g_al gs<2..2"16-2>;

case false: struct {

uint8 previous_entity_id;

enum { false(0) , true(l), (255) } discovery_ack;

sel ect (discovery_ack) {

case true: struct {

Handshakel D hs_i d;
opaque pre_di scovery<1..255>;
M ddl eboxLi st nl _d;

case false: struct { };
i
i

s
Address client_address, server_address;
enum{ false(0) , true(l), (255) } is_client_resunption_req;
select (is_client_resunption_req) {

case true: Handshakel D hs_id;

case fal se: ContextlList cL;

}
M ddl eboxList m _i;
} TLNSP;

Thet | msp_ver si on hasno direct relationto thever si on field of the TLM SP record header of Figure 2. When
initiating the handshake, the ver si on field of the TLM SP record header indicates which version of TLS serves asthe
base specification from which the current version of TLMSP is derived, and thus also indicates which version of TLSto
fallback to, in case TLMSPis not supported. Thet | mps_ver si on in the extension indicates the requested version of
TLMSP. Thevaluet | nsp_version = {1, 1} shal be used for the current version of TLMSP as defined in the
present document. The (possibly different) valuesof t | msp_ver si on in the extension carriedintheCl i ent Hel | o
and the Ser ver Hel | o shall be used for TLMSP version negotiation in the same way asthever si on field of the
record header isused by TLS for version negotiation as defined in [1]. Since the fixed datain the TLMSP extention
(including length indicators of variable length fields) consists of at least 38 octets and the maximum sizeof aTLS
extension is 2°16-1, this leaves at most 65497 octets for any variable length fields.

The client shall include its support for TLM SP-specific cipher suitesin thefieldt | nsp_ci pher _sui t es, which
shall follow the same format as defined in [1]. Thevalueser ver _anon shall be used by the client to signal if itis
willing to accept connections in which the server does not authenticate.

NOTE 1: Thisfield appliesonly to the server and serves the same purpose as the set of anon cipher suitesin TLS,
but without the need to define a specific separate anon cipher suite for each authenticated cipher suite.

The possibility for middleboxes to skip authentication is also supported but handled via the middlebox list, as defined
below.

ETSI

50 ETSI TS 103 523-2 V1.2.1 (2022-03)

The server shall usethet | msp_ci pher _sui t es andser ver _anon field to indicate the selected TLM SP cipher
suitein the Ser ver Hel | 0. The client shall also include support for standard TL S cipher suitesin the normal way, as
part of the hello message body (outside the extension field), to allow TLS fallback as defined in annex C. If TLMSP,
rather than TLSis chosen by the server, the server shall use timsp cipher suite selection only to indicate TLM SP cipher
suites as TL S cipher suites are not needed. However, the server shall then also populate the normal TLS cipher suite
field of the Ser ver Hel | o withthevalue TLS _NULL_W TH_NULL_NULL. The currently defined TLMSP cipher
suites are found in annexes A and B.

Inthe Ser ver Hel | o, thesupported_si g_al gs field may be empty if the server does not expect any certificates.

Thevaueprevi ous_entity_ i d shal beused toindicate to the next-hop-entity from which entity (client or
middlebox) an inbound Cl i ent Hel | o isbeing forwarded, as described in clause 4.3.2.3.

When a TLM SP connection is first attempted, the client shall set thefielddi scovery_ack tof al se. Only thefirst
middlebox list m _i shall be present and shall include middleboxes already known to the client. During such initial
handshake, additional middleboxes may be dynamically discovered as described in clause 4.3.2.3. No hash value shall
be included.

When the new handshake following the discovery isinitiated by the client, the client shall set the field

di scovery_ack tot rue and both theoriginal list M _i and the complete list of all authorized middieboxesm _d
shall beincluded. The server shall inthe Ser ver Hel | o includethereceived ml _d listasitsownm _i listinits
corresponding response. The value pr e_di scovery shall also be present inthe second C i ent Hel | o following
dynamically discovered middlebox(es). The pr e_di scovery field shall contain the hash of all the messages
sent/received between client and server up to, but not including, thissecond d i ent Hel | o, see clause 4.3.9.4 for
details. The field is defined as variable length to limit the need to maintain state at server between first and second

d i ent Hel | o (thefield size otherwise depends on the proposed cipher site).

Each entry in the middlebox list specifies the middliebox's address, aunique 1D, and alist of contexts with the
corresponding access privilege level. For contexts not present in the list, the privilege level is" none" . As

Appl i cat i on protocol containers (including deletion indication containers) cannot appear in context zero,
middleboxes shall not be assigned the " del et e" access privilege level for context zero. The list also contains
proposed authentication methods that the endpoints propose to use with each middlebox. The ticket shall be included if
the client seeks to resume a previous session based on a previously received ticket.

struct { /* mddl ebox identification */
uint8 entity_id
Addr ess address

} M ddl ebox;

struct {

uint8 context _id; /* 1D of context */

enum { none(0), read(1l), delete(2), wite(3), (255) } authorization; /* privilege |level */
} Cont ext Access

struct {
enum { anon(0), psk(1), gba(2), (255) } nethod_id; /* alt. key ex. nethod, see annex B */
opaque credential _hint<0..2"16-1>; /* hint to identity of the credential (psk) to use */

enum { false(0), true(l), (255) } use_certificate; /* true if and only if the m ddl ebox
is expected to authenticate itself
using a cerificate to other endpoint */
} MooxAl ternativeC pherSuite

struct {
M ddl ebox mi ddl ebox; /* m ddl ebox identification */
enum { static(0), dynamic(1), forbidden(2), (255) } inserted
enum { false(0), true(l), (255) } transparency; /* is the m ddl ebox transparent or not */

opaque ticket<0..2716-1>; /* used during session resunption with tickets */
select (is_client_resunption_req) {
case true: struct {}; /* resune al ways use the sane contexts and accesses */
case fal se
struct {
uint8 n_contexts; /* nunmber of contexts for this mddl ebox */

Cont ext Access contexts[2*n_contexts]; /* list of contexts for this mddl ebox */
enum { standard(0), alternative(1l), (255) } cipher_suite_options; /* see text */
sel ect (cipher_suite_options) {

case alternative: MoxAlternativeC pherSuite alt_cs

case standard: struct { };

ETSI

51 ETSI TS 103 523-2 V1.2.1 (2022-03)

H
H
} M ddl eboxI nf o;

M ddl eboxI nf o M ddl eboxLi st <0..2"16-1>;

The (possibly empty) t i cket shall be used asdefined in IETF RFC 5077 [2]. Thefieldi nsert ed isused to
distinguish between middleboxes that are statically pre-configured or added dynamically during the handshake. The
field may also be used to prevent "black-listed" middleboxes from being dynamically added. The truth value of
resunpti on_att enpt may be established based on the presence of asessiont i cket , or on the presence of a
sessionIDinthed i ent Hel | o.

Using thefield ci pher _sui t e_opt i ons, the endpoints shall signal to each middlebox whether that middlebox
should use the standard cipher suites as defined in annex A, or, whether the middlebox should use the alternative cipher
suites as defined in annex B. The difference between the standard and alternative cipher suites are only related to the
key exchange and authentication method.

The client may further usethe fielduse_certi fi cat e of theal t _cs field to instruct the middiebox whether it
should present and authenticate itself using a certificate to entities located downstream of the middlebox (in the
direction of the server, including the server itself), or, to only be implicitly authenticated. Implicit authentication means
that such downstream entities are assumed to trust the client and that the client will properly authenticate the middlebox.
Thisimplicit authentication should only be used when such trust exists, and, when the downstream entities can
authenticate the client. The server or any other entity may reject such proposal and terminate the connection.
Middleboxes who are not explicitly instructed to not provide their certificates shall provide them according to standard
procedures. The setting of ci pher _sui te_opti ons as" st andar d" (i.e. by an empty valuefor al t _cs) shall
be interpreted as the endpoint accepting the standard (certificate based) mechanisms, that is, it shall not to be
interpreted as the endpoint requiring standard mechanism. The client shall include preferences about aternative
middlebox cipher suitesinthelist m _i included in the client's TLM SP middlebox list extension.

The above shall apply, mutatis mutandi, also when the server responds and provides its own middlebox list extension
toward the client, see below. If both the client and the server simultaneously signals to a specific middlebox to not use a
certificate in either direction, the alternative cipher suite used with that middlebox shall provide built-in authentication
of the middlebox, e.g. through the use of pre-shared keys or similar mechanism.

The values chosen by the client and server for ci pher _suite_opti ons anduse_certifi cat e aremade
independently by the client and server endpoints and shall apply only to the point-to-point security configuration
between the endpoint and the middiebox in question. That is, the pairwise keys between pairs of middleboxes continue
to use the key exchange mechanism of the standard cipher suite regardless of the value of

ci pher _suite_options. If for agiven middiebox, an endpoint setsci pher _suite_optionsto"alt_cs"
alternative and sets et hod_i d to "anon", the middiebox will not provide a certificate to that endpoint. Thisimplies
that pairwise key exchange between that middlebox and any other middleboxes between it and the other endpoint will
also not be authenticated. Likewise, if for agiven middlebox, an endpoint setsuse_certificateto"fal se", the
middlebox will not provide a certificate to the other endpoint, so the pairwise key exchange between that middlebox and
any other middleboxes between it and the other endpoint will not be authenticated.

EXAMPLE 1: For aspecific middlebox, the client could set use_certificate = "fal se" and
ci pher _suite_options = "alternative", whilethe server, for the same middlebox,
setsuse_certificate = "true" andci pher _suite_options = "standard".
Thiswill not cause interoperability problems, see annex B.

NOTE 2: If, for example, the client instructs the first middliebox to not present its certificate to downstream entities,
thisimplies that no downstream entity will be able to authenticate the first middlebox. In this case, mere
trust in the client, and that the client properly authenticates the first middliebox could provide insufficient
assurance unless the client authenticates itself to all downstream entities. A converse scenario applies
when the server instructs a middlebox to not authenticate itself toward downstream entities (in the server-
to-client direction).

NOTE 3: One endpoint's setting of ci pher _sui te_opti ons as " st andar d" does not cause conflict with the
other endpoint's possibility of settinguse_certificate to "fal se", aslong as none of the
defined alternative cipher suites require certificates. Under these conditions, a middliebox receiving such
indication will simply not present a certificate to the endpoint setting ci pher _sui te_opti ons as
"standard".

ETSI

52 ETSI TS 103 523-2 V1.2.1 (2022-03)

Thehbh_i dintheServer Hel | o and Cl i ent Hel | o TLMSP extensions may be used by entities to signal values
of thehbh_i d that the entity wishesto use in the header field of its outbound TLM SP messages, in both directions.
This may be used for TLM SP session multiplexing and/or network troubleshooting as defined in clause 4.2.2.1.2. If the
mechanism of clause 4.2.2.1.2 is not in use, each entity may assign an arbitrary value to the hbh_i d field during the
handshake.

The server shal includeinits Ser ver Hel | o responsethelistm _i of all middieboxesthat it received viathe

Cl i ent Hel | o (i.e including additional middleboxes that have been added dynamically in-band as defined in

clause 4.3.2), and furthermore extended by any middiebox requested for addition by the server (see aso clause 4.3.2).
The Ser ver Hel | o shall aso contain the server-assigned handshake ID, hs_i d, and the server's supported signature
algorithms. The hs_i d isuseful for identifying a new TCP connection to the server, following dynamic discovery of
middleboxes as described in clause 4.3.2.3. The support ed_si g_al gs list may be used by middleboxes to deduce
which certificate(s) to present: the middiebox already knows the client's support (from default values or extensions to
d i ent Hel | 0) but only knows the single server-supported algorithm indicated by the server's certificate. Thus, this
information improves the likelihood of the middlebox being able to select an appropriate certificate/algorithm. If a
middlebox does not support any of the client/server indicated algorithms, it shall send an alert of type

handshake_f ai | ur e at the point where the middliebox would otherwise send its certificate.

The second component of the extension to the Hel | o isalist of the context IDs and descriptions. A context description
comprisesapur pose string meaningful only to the application; TLMSP does not useiit.

EXAMPLE 3: A pur pose string could have the value "malware removal service" for a middiebox performing
malware removal .

struct {
uint8 context _id;
enum { unconfirmed(0), audit_info(1), audit_trail(2), (255)} audit;
opaque purpose<0. . 255>;

} Cont ext Description;

Cont ext Descri pti on Context Li st<3..2716-1>;

Context identitiescont ext _i d shall be assigned values forming a contigous block of context identifiers: 0, 1, ...,
n_cont ext s- 1.The Cont ext Li st shall not include an entry for the reserved context withcont ext _id = 0.

Theaudi t fieldisused to request confirmation from middleboxes that the containers associated with the context have
traversed viathem, allowing them to act on the content (if authorized). The values” audi t _i nf 0" and
"audit_trail" enablethe production of audit containers as described in clause 4.2.3.1.5. The value
"unconfirnmed" indicatesthat all entities shall not insert any audit containers for the associated context. Additional
values of audi t are intended to be defined in the future, specifying that middleboxes add information on their
processing to the audit containers.

The third and fourth extensions are related to the TLM SP proxying and their usage is described in clause C.2 of the
present document.

TLMSP puts no restrictions on which port number to use.

Further (optional) TLM SP-related extensions are defined in annexes B and C.
4.3.6 Middlebox related messages

4.3.6.1 MboxHello
The MooxHel | o message shall be structured as follows:

struct {

uint8 nmbox_entity_id,;
Pr ot ocol Versi on client_version;
Random cl i ent _nboxhel | o_random server_nboxhel | o_random
Sessi onl D sessi on_i d;
sel ect (extensions_present) {

case false: struct {};

case true: Extension extensions<0..2"16-1>;

b

ETSI

53 ETSI TS 103 523-2 V1.2.1 (2022-03)

} MooxHel | o;

The MboxHello isidentical to aTLS 1.2 Hello, except for the inclusion of thembox_ent i ty_i d, the two random
parameters, cl i ent _nboxhel | o_randomand ser ver _nmboxhel | o_r andom The message excludes cipher
suites and compression methods (since compression is not supported and selection of cipher suite is made by the server,
before the MooxHel | o is sent). Middleboxes shall provide the same content in their MboxHello directed to client and
server. The two random values shall be selected (pseudo)randomly and independently. The client shall use the

cli ent _nboxhel | o_r andomto generate master keys shared with the middlebox, whereas the server shall use the
server _nboxhel | o_r andomto generate master keys shared with the middiebox. If a middiebox does not support,
or does not approve the proposed alternative cipher suite, it should raisean unsupport ed_ext ensi on adert.

This message shall always be forwarded by middleboxes.

4.36.2 MboxCertificate

Asisshown in Figure 6, unless the server has set the extension field use_certi fi cat e to false, this message shall
be sent from middlebox to client when the middiebox has received the Ser ver Hel | oDone. The message shall,
unless the client specified had set the extension fielduse_certi fi cat e to false, be ssmultaneously sent from the
middlebox back to the server. The MooxCer ti fi cat e shal haveidentical content when sent to both the server and
to the client.

NOTE: Thisisidentica in format to a server's Certificate message, but with an added entity identity field of the
middlebox.

This message shall have the following structure:

struct {
uint8 nmbox_entity_id;
Certificate cert;

} MooxCertificate;

Thefieldcer t shall beformatted astheCerti fi cat e messagein clause 7.4.2 of IETF RFC 5246 [1].

The middlebox shall set mbox_entity_idtothenbox _entity_ i dvauefoundinthereceived Server Hel | o
message. The message shall always be forwarded by other middleboxes.

4.3.6.3 MboxCertificateRequest

This message shall have the following structure:

struct {
uint8 nmbox_entity_id,;
CertificateRequest cr;
} MooxCertificat eRequest;

This message shall be sent by a middlebox to the client when the middlebox wishes to authenticate the client and shall
always be forwarded by other middleboxes.

4.3.6.4 Certificate2Mbox

This message shall have the following structure which isidentical to the MooxCer ti fi cat e message defined in
clause 4.3.6.2:

struct {
uint8 nmbox_entity_id,;
Certificate cert;

} Certificate2Mmox;

If, and only if, the signature verification by the client as defined in clause 4.3.10.1 is successful, this message shall be
sent by aclient in response to areceived MooxCer ti fi cat eRequest fromamiddliebox with identity
nmbox_entity_i d. A middlebox receiving this message shall always forward it, unless the middlebox is the intended
receiver.

ETSI

54 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.3.6.5 MboxKeyExchange

This message shall have the following structure:

struct {
uint8 mbox_entity_id,;
TLMSPSer ver KeyExchange client_exch; /* key exchange mi ddl ebox <-> client */
TLMSPSer ver KeyExchange server_exch; /* key exchange mi ddl ebox <-> server */
} MooxKeyExchange;

The security relevant parameters of ¢l i ent _exch and ser ver _exch shall be generated independently, but
identical copies of this message shall be sent to both server and client. If the client has not requested an alternative
cipher suite, or has requested the alternative cipher suiteanon, the client shall useonly thecl i ent _exch element to
establish the shared pre-master secret. If the client has requested alternative cipher suite other than anon, the
middlebox shall gtill provideacl i ent _exch component, but the client and the middlebox shall ignore it when
generating their pairwise master key. In this case, the middlebox closest to the client may populatethecl i ent _exch
field with a correctly formatted dummy value. Thecl i ent _exch component shall however be used by other
middleboxes situated between the middlebox in question and the client when generating master key between the
corresponding pair of middleboxes. If the client has requested an alternative cipher suite withmet hod_i d = anon,
or, the server hasrequested use_certificate = fal se, neither the client, nor any middlebox situated between
the middiebox in question and the client will be able to verify the authenticity based on the MooxKeyExchange
message itself.

The paragraph above shall apply aso when substituting "client" with "server", cl i ent _exch withser ver _exch.

The entire message (including both elements) shall be included by both client and server when computing the
Fi ni shed hash. TLMSPSer ver KeyExchange isdefined in clause 4.3.10.1.

The dh_p and dh_g parameters of the Ser ver DHPar ans in the contained TLMSPSer ver KeyExchange
structures shall be identical to thosein TLMSPSer ver Key Exchange message received earlier from the server, and
they shall be ignored by the endpoints upon receipt. This message shall always be forwarded by middleboxes.

If the middlebox, viathe MooxHel | o of clause 4.3.6.1, has accepted one or both endpoint's suggested use of
aternative cipher suites according to annex B, the part of the message directed to that endpoint shall be ignored by the
endpoint, except for the purpose of generating the Fi ni shed verification message. Non-endpoint entities, e.g. other
middleboxes |ocated between the sender middlebox (generating the Moox Key Exchange) and the endpoint shall use
the MooxKeyExchange information in the standard way, to generate shared keys with the sender middlebox, except
that authentication of the parameters will not be possible depending on the settingsof use_cert f i cat e requested by
the endpoints.

4.3.6.6 MboxHelloDone

Thisisidentical in format to aSer ver Hel | oDone of IETF RFC 5246 [1], but with an added identity field of the
middlebox. This message shall have the following structure:

struct {
uint8 nmbox_entity_id;
Server Hel | oDone hd;

} MooxHel | oDone;

This message shall have identical content to the server and to the client and shall always be forwarded by middleboxes.

4.3.6.7 CertificateVerify2Mbox

This message shall have the following structure:

struct {
uint8 nmbox_entity_id;
CertificateVerify cv;
} CertificateVerify2Mmox;

ETSI

55 ETSI TS 103 523-2 V1.2.1 (2022-03)

This message shall be sent followingaCer ti fi cat e2Moox asdefined in clause 4.3.6.4 that is sent to a middlebox
with the stated nhox_enti ty_i d. It allowsthat middlebox to verify the client. A middlebox receiving this message
shall always forward it, unless the middlebox is the intended receiver.

4.3.6.8 ServerUnsupport

This message shall be used by the first middiebox to detect that the server does not support TLMSP, i.e. the middlebox
located closest to the server and shall be sent from that middlebox towards the client.

struct {
uint8 entity_id; /* the identity of the m ddl ebox originating the nessage */
Hopl D hbh_i d; /* hbh_id chosen by the m ddl ebox originating the message */

M ddl eboxLi st niddl ebox_info; /* list of middleboxes */
} ServerUnspport;

The i ddl ebox_i nf o field shall contain the complete list of middleboxes that the originating middlebox
previously forwarded to the server, i.e. including any dynamically discovered middleboxes. Other middleboxes shall
forward this message to the client.

Thehbh_i d shall be the value that the middlebox originating the message previously sent to the server in the
d i ent Hel | 0. Transmitting thisvalue in ServerUnsupport alows the client to compute the Finished hash in step (3)
of clause C.2.2 based onthe Cl i ent Hel | o contents the server received.

4.3.6.9 NewMboxSessionTicket

This message shall be used by middleboxes to issue new session tickets in analogy with server'stickets. The message
shall have format following [3], but with an entity identity field identifying the source of the message.

struct {
uint8 entity_id;
unit32 ticket _lifetinme_hint;
opaque ticket<0..2716-1>;

} NewMboxSessi onTi cket ;

4.3.6.10 MboxFinished

A specia handshake verification message is defined, used only between an endpoint and a middlebox. It shall have the
format:

struct {

uint8 entity_id;

opaque verify_data[verify_data_l ength];
} MooxFi ni shed;

entity_i d shall bethe entity identity of the origin/destination middlebox.

veri fy_dat a shal be formatted as specified in clause 7.4.9 of IETF RFC 5246 [1] with the deviations for the hash
computation as specified in clause 4.3.9.3.

NOTE: Different dataisincluded in hash computations for the "standard" Fi ni shed message sent between
endpoints than for the Moox Fi ni shed message, since not all parties have access to the complete set of
messages exchanged during the handshake.

When a middlebox receives an MooxFi ni shed message destined to it, after validating theincluded veri f y_dat a,
it placestheveri fy_dat a for the downstream endpoint into the record at the same location, applies the record
protection, and forwards the record to the next entity downstream. No other modifications shall be made to the received
record.

ETSI

56 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.3.7 TLMSPKeyMaterial and TLMSPKeyConf

4.3.7.1 KeyMaterialContribution

The following described message generation method shall be the used when generating TLMSPKey Mat er i al and
when generating TLMSPKey Conf messages. The only difference between the two types of messagesis that the
messages shall have different t ype identifiersand the cont ent field shall be generated differently as described
below.

With reference to Figure 6, during an initial handshake, the TLMSPKey Mat er i al and TLMSPKey Conf messages
occur before the ChangeCi pher Spec message, which will activate record protection. The content payload of each
TLMSPKeyMat eri al and TLMSPKey Conf message shall however still be protected as described in the present
clause, using the keys established between only the endpoint and the receiving entity, and using the same encryption
and integrity check mechanism that is being agreed during the ongoing handshake, see clause 4.3.1 of the present
document and clause 7.4 of IETF RFC 5246 [1].

If record size extensions of IETF RFC 8449 [7] is being negotiated, the new record sizes shall be applied to the
TLMSPKeyMat eri al and TLMSPKey Conf messages, even though they occur before the ChangeCi pher Spec
message (which would otherwise activate usage of the new record sizes).

sel ect (SecurityParaneters. cipher_type) {
case stream StreanC pherContribution;
case bl ock: Bl ockCi pherContribution;
case aead: AEADCi pher Contri buti on;

} KeyMaterial Contri bution;

In the structures below, thecont ri but i ons field shall be comprised of the sequence of contributions for al contexts
to which the middlebox has at least read access (thus, ar eader _cont ri b shall be present and a
witer_contribordel ete_contrib maybepresent for each context). Specifically, a contribution shall have
the following format, where key | engt h isequal to Secur it yPar anet ers. enc_key_| engt h:

struct {
uint8 context _id;
opaque reader_contrib<0..key_length> /* zero length if no read access granted */
opaque del eter_contrib<0..key_length> /* zero length if no del ete access granted */
opaque witer_contrib<0..key_length> /* zero length if no wite access granted */
} Contribution;

The maximum value of Securi t yPar anet er s. enc_key_| engt h supported by TLMSP shall be 2'-1 octets.

Below, for agiven entity i , (the intended recipient of the message) the value n_r ct xt shall equal the number of
contextsto whichi is granted the read access privilege level, n_dct xt shall equal the number of contextsto whichi is
granted the delete access privilege level, and n_wct xt similarly shall equal the number of contextsto whichi is
granted the write access privilege level. Finaly, n_ct xt shall equal the number of contextsto whichi isgranted an
access privilege level greater than "none”. Theent i ty_i d shall be the entity identity, i , of the entity (middlebox or
endpoint) to which the message is directed and shall be left unencrypted.

NOTE 1. Whena del eter_contri bispresent, alsoar eader _cont ri b will be present, and when
writer_contribispresent, bothareader _contri bandadel et er _contri b will be present.

NOTE 2: Although deleter MACs are never used in context zero, as write access implies delete access generally,
del et er _contri b ispresent for context zero in order to maintain a regular approach across all
contexts.

struct {
uint8 entity_id;
opaque record_I V[SecurityParaneters.record_iv_|l ength];
stream ci phered struct {
Contribution contributions[n_ctxt + (n_rctxt + 2*n_dctxt + 3*n_wctxt) * (2+key_length)];
opaque mac[SecurityParaneters. mac_| ength];

} StreanCi pherContri buti on;
struct {

uint8 entity_id;
opaque record_I V[SecurityParaneters.record_iv_| ength];

ETSI

57 ETSI TS 103 523-2 V1.2.1 (2022-03)

bl ock-ci phered struct {
Contribution contributions[n_ctxt + (n_rctxt + 2*n_dctxt + 3*n_wctxt) * (2+key_length)];
opaque mac[SecurityParaneters. mac_| ength];
ui nt 8 paddi ng[Bl ockCi pher Contri buti on. paddi ng_| engt h] ;
ui nt 8 paddi ng_I engt h;

b
} Bl ockGi pher Contri buti on;

struct {
uint8 entity_id;
opaque record_nonce[SecurityParaneters.record_iv_|ength];
aead- ci phered struct {
Contribution contributions[n_ctxt + (n_rctxt + 2*n_wdtxt + 3*n_wctxt) * (2+key_length) +
D + SecurityParaneters. mac_| ength];

}
} AEADCI pher Contri buti on;

wherekey | engt hiisequa to Secur it yPar anet ers. enc_key_| engt h, and the value D corresponds to
padding and other overhead added by the AEAD transform in use.

For AEAD transforms, the AAD shall be defined as:
AAD = entity_id || record_nonce.

A contribution received from the server granting read (delete or write) accessto cont ext _id = i ishereinafter
notationally described asser ver _reader_contri b_i (andserver_del eter_contrib_i,
server_writer_contrib_i).Similarly, acontribution received from the client granting read (delete or write)
accesstocontext _id = i isinthesequel denotedcl i ent _reader_contrib_i (and
client_deleter_ontrib_i,client_witer_contrib_i).Thecontributionsfrom client and server shall
be combined according to clause 4.3.10.5 intor eader _key bl ock_i,del et er _key_bl ock_i , and
writer_key bl ock_i .Fromthese combined blocks, the actual data protection keys (in each of the two directions)
shall be derived as defined also in clause 4.3.10.5.

For messages that contain an explicit MAC (i.e. non-AEAD contributions), the MAC of the message shall be calculated
as.

MAC(el_to_e2_nmc_key, KeyMaterial Contribution.entity_id ||
KeyMat eri al Contribution.record_IV ||
KeyMat eri al Contri bution. contri butions)

whereel to_e2 nmac_key isthe MAC key shared between endpoint e1 and middlebox (or other endpoint) e2
derived according to clause 4.3.10.4. For encryption of the messages defined in this clause, the shared key
el to_e2 encrypti on_key generated asin clause 4.3.10.4, shall be used.

NOTE 3: No sequence numbers are input to the MAC calaculations, see annex E for security considerations.

4.3.7.2 TLMSPKeyMaterial

TLMSP introduces a new Handshake message for delivering context key material to the middleboxes. During the
handshake, both the client and server shall send TLMSPKeyMat er i al messages through the chain of all middleboxes,
providing key shares for each middlebox (and the other endpoint). The message contains, for each context, a partial
secret for each access right granted to a middlebox for that context. At least one message (for context zero) shall always
be present. The final keys used to protect the context(s) can be derived only with both partial secrets (from the client
and from the server); knowledge of only one partial secret in isolation does not reveal any knowledge of the context
protection keys. Each TLMSPKey Mat er i al message shall be generated by an endpoint e (server or client) using the
defined data formats of clause 4.3.7.2, populated by parameters computed as defined in the sequel of the present clause.

Individual TLMSPKey Mat er i al messages shall be formatted in the same way asKeyMat eri al Cont ri buti on,
defined in clause 4.3.7.1.

NOTE 1. All TLMSPKeyMat eri al and TLMSPKey Conf use the same fixed sequence number. Thisisnot a
security problem since there will be at most one such message processed by any given cryptographic key.

ETSI

58 ETSI TS 103 523-2 V1.2.1 (2022-03)

Theentity_id field shall be set to the receiving middiebox and the cont ext _i d of each part of the contribution
shall be set to the context to which the contribution pertains. The value key | engt h shall beidentical to
SecurityParanet ers. enc_key_| engt h and the applicabler eader _contri b,del eter_contri b, or
writer_contri b field(s) shal be randomly generated using a cryptographically strong method. The

del eter_contribandwiter_contri b shal becryptographically independent from each other and from the
reader _contrib.

NOTE 2: Each transferred contribution has the same size as the final desired key length. Thus, when the two parts
from both client and server are combined, the resulting effective key length is sufficient for full entropy
of both encryption and MAC keys.

The endpoints may use "piggy-backing" as defined in clause 4.3.1.2 to transmit TLMSPKey Mat er i al information
elements directed to several middleboxes in the same TLM SP record.

4.3.7.3 TLMSPKeyConf

Asshown in Figure 6, the TLMSPKey Conf (Key Confirmation) message shall be generated and sent by the
middleboxes as they receive TLMSPKey Mat er i al signalling from the client towards the server, and likewise for the
other direction. The TLMSPKey Conf message provides proof to the client and server that each middlebox has
successfully obtained correct (partial) key material from the other endpoint for al contexts to which the middiebox is
granted access. For the client, the receipt of one or more TLMSPKey Conf messages also explicitly proves that the
client's own key material contributions were correctly received by the server (the server obtains this confirmation
implicitly, see below).

The TLMSPKey Conf message shall be structured asthe KeyMat er i al Cont ri but i on message format (defined in
clause 4.3.7.1). That is, the same message fields shall be used, but with different usage and semantics as defined below.
An entity determines whether a message contains TLMSPKey Conf or TLMSPKeyMat eri al by using the included
message type (as defined in clause 4.3.4).

For each received TLMSPKeyMat er i al message, MK, directed to the middliebox, exactly one TLMSPKey Conf
message, MC, shall be generated as follows by the middlebox.

The middlebox shall settheentity i d field of MC toits own identity.
The middlebox shall further generatethe cont ri but i ons field of MC, where the to-be-protected payload is either:

e theentiredecrypted cont ri but i ons field of the MK message received from the client, when forwarding
the message M C in client-to-server direction; or

. the entire decrypted cont ri but i ons field of the MK message received from the server, when forwarding
the message M C in the server-to-client direction.

ThelV, MAC, and other fields as defined in clause 4.3.7.1 shall be generated according to the selected cipher suite. The
symmetric key shared with the destination endpoint, as determined according to clause 4.3.10.4, shall be used.

The newly generated TLMSPKey Conf message MC shall then replace the corresponding received

TLMSPKeyMat er i al message MK when forwarding the message towards the destination. Any additional
TLMSPKeyMat er i al messages (not directed towards this middliebox, which is detectable by theent i ty_i d field)
shall be forwarded without further processing/action.

EXAMPLE: An origina (complete) set of messages that was sent from an endpoint source that initially
contained TLMSPKeyMat er i al sharesfor middieboxese[1] ,e[2],...,e[N (innetwork
topological order) and e' (the destination endpoint, server or client), after processing by
middlebox e[j] containsthe TLMSPKeyMat eri al for middieboxese[j +1],e[j +2],. ..,
e[N], and destination €' , and, in addition, TLMSPKey Conf messages from middleboxes
e[1], e[2], ..., e[]j],directedtoe’.

ETSI

59 ETSI TS 103 523-2 V1.2.1 (2022-03)

When the destination endpoint ultimately receivesthe single TLMSPKey Mat er i al message (from the other endpoint)
and the set of TLMSPKey Conf messages, it shall verify that it received TLMSPKey Conf messages from all
middleboxes, and for each context for which access to that middlebox was granted. The receiving endpoint shall then
decrypt, verify integrity, and finally confirm that each of the retrieved decrypted secrets matches with the expected
value. This confirmation shall be done as follows, depending on the endpoint in question:

e theserver shal verify that all the secret(s) of al the contexts (r eader _contri b,anddel ete_contrib
orwiter_contrib)of MCisequa to the corresponding values of the client's share as received directly
from the client (in its own, separate TLMSPKey Mat er i al message);

e theclient shall verify that all the secret(s) of al the contexts (r eader _contri b,anddel ete_contrib
orwiter_contrib)isequa tothe server's share(s) asreceived directly from the server in the
TLVSPKeyMat eri al message.

If any of these checks fail, the endpoint shall send an aert of typemni ddl ebox_key confirmation_fault and
shall abort the handshake. The event should be logged.

NOTE: The above provides explicit confirmation to the client that all middleboxes received both contributions
from the client itself and from the server. The server obtains an explicit verification of the contributions
from the client and will later obtain an implicit confirmation of its own key contributions viathe
middleboxes MooxFi ni shed messages, see clause 4.3.9.3.

4.3.8 MboxLeaveNotify and MboxLeaveAck

4.38.1 Message format

These messages shall have the following structure:

struct {
uint8 nmbox_entity_id;
} MooxLeaveNoti fy;

struct {

uint8 nmbox_entity_id,;
} MooxLeaveAck;

These messages are sent when a middlebox wishes to leave a session and shall be processed as defined in clause 4.3.2.5.
4.3.8.2 Message processing

43821 General

The MboxLeaveNot i fy and MboxLeaveAck messages shall only be issued after completeing the handshake, and
such messages occurring at earlier stages shall be discarded.

A simplified overview of the function of these two messages follows. When a middiebox wantsto leavea TLM SP
session, it enqueues an MooxLeaveNot i f y message to be sent in each direction. These messages are forwarded to
the endpoints, who in turn each respond with a corresponding MooxLeaveAck message. Asan MboxLeaveAck
message travels to the other endpoint, it provides the synchronization point for:

e theentity upstream of the departing middlebox to begin computing hop-by-hop MACs using the pairwise key
it shares with the entity downstream of the departing middlebox;

e thedeparting middlebox to stop participating in the protocol in that direction (including stopping to add or
verify hop-by-hop MACS), but keeps active transport connections and begin simply translating hbh_i d
values and forwarding al transport packets for the remaining lifetime of the transport connections; and

e theentity downstream of the departing middlebox to begin expecting hop-by-hop MACs computed using the
pairwise key it shares with the entity upstream of the departing middlebox.

ETSI

60 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.3.8.2.2 Detailed operation

Each entity maintains a concept of the current state of each middlebox for each direction of communication (client-to-
server and server-to-client). The three states shall be: establishing, participating, and gone. The states shall have the
following meaning.

establishing: The middlebox has not yet completed the handshake in the given direction. Thisistheinitial state.

participating: The middlebox has completed the handshake and is fully participating in the TLMSP protocol in
the given direction.

gone: The middlebox has reduced its participation in the given direction to forwarding unmodified
transport packets.

Each middlebox shall also maintain the single state variable| eave_noti fy_sent, which indicates whether it has
begun the departure process.

When an entity receives, or in the case of an originating endpoint, sends, an MooxFi ni shed message pertaining to a
given middlebox, it shall update that middliebox's current state for that direction to "participating”. Other state

transitions are described below. Middleboxes keep track of the upstream and downstream (participating) neighbours as
described in clause 4.2.7.2.3, and verify/compute the associated hop-by-hop MACs as also describein clause 4.2.7.2.3.

When a middlebox in the participating state wishesto leave a TLMSP session, it shall set| eave_noti fy_sent to
"true” and send an MboxLeaveNot i fy message, withmbox_enti ty_i d set toitsentity identity, in each direction.
An MooxLeaveNot i fy message shall not be combined in arecord with any other messages. The middlebox shall
ensure that the second MooxLeaveNot i fy messageis sent before the MooxLeaveAck message corresponding to
thefirst MooxLeaveNot i fy messageisreceived and processed.

When an entity receives an MooxLeaveNot i fy message:

. If the originator of the message is an endpoint, or the origin of the message is a middlebox that is not in the
participating state in the direction the message was received, the entity shall raise a fatal
unexpect ed_nessage aert and stop further processing.

. If the entity is not an endpoint, it shall forward the message.

. If the entity is an endpoint, it shall respond with an MboxLeaveAck message bearing the same
nbox_entity_i d. Theentity should send all MooxLeaveAck messagesin the same order that the
corresponding MooxLeaveNot i fy messages were received.

An endpoint sends an MboxL eaveAck message in response to an MooxLeaveNot i fy asdescribed under
MooxLeaveNot i fy processing above. An MboxLeaveAck message shall not be combined in arecord with any
other messages. Immediately after an endpoint sends an MooxLeaveAck message, it sets the current state of
middlebox mbox_ent i ty_i d inthat direction to gone.

When an entity receives an MooxLeaveAck message:

. If any of the following conditions hold the entity shall raise afatal unexpect ed_nmessage alert and stop
further processing:

o theoriginator of the message is not the upstream endpoint; or

o0 thecurrent state of the middliebox indicated by thenbox_enti ty_i disnot "participating" in the
direction the message arrived in; or

o theindicated mbox_entity_iddoesnot equal the nbox_entity_idof any previously
processed/forwarded MooxLeaveNot i fy.

. If the entity is not an endpoint, it shall forward the message.

. If the entity is upstream of the middiebox nhox_enti ty_i d, immediately after sending the message, the
entity shall set the current state of the middiebox nbox_enti ty_i d inthat direction to "gone".

ETSI

61 ETSI TS 103 523-2 V1.2.1 (2022-03)

. If the entity is the same entity asindicated by mbox_ent i ty_i d, then immediately after forwarding the
message the entity shall start to perform hop-by-hop identity trandation on all subsequent records forwarded in
the same downstream direction by simply replacing the hbh_i d of received records within the current
session, to the hbh_i d that has previously been used by the entity for the current session.

. If the entity is downstream of the middiebox nbox_entity_i d, immediately after processing the received
message, the entity shall set the current state of the middiebox mbox_entity_id in that direction to "gone”.

. If the entity isthe middlebox mbox_entity_id,andl eave_notify_sent is"fase", it shal raisean
unexpect ed_nessage aert and stop further processing. Otherwise, if leave notify_sent is"true", it shall
forward all subsequent transport packets without performing any further processing.

. If the entity is an endpoint, immediately after processing the received message, the entity shall set the current
state of the middlebox mbox_entity id in that direction to "gone".

Although a departing middlebox sends an MboxLeaveNot i f y message in each direction when beginning the
departure process, in general, the actual transition of the middliebox's local state to "gone" will occur at different times
in each direction. This givesrise to the possibility that the middliebox's processing in one direction encounters an error
that requires an aert to be sent in the other direction, but that direction has transitioned to the gone state, so no such
action is possible. In this case, the middiebox shall either send an alert only in the direction in which it is till
participating or forward the message whose processing generated the error in such a way that the alert will be raised by
the next downstream entity.

When the status of awriter or deleter middlebox changesto "gone”, the first downstream adjacent writer or deleter
middlebox shall from this point on reconfigure to no longer having the leaving middlebox as the expected deleter/writer
author of deleter/writer MACs, and shall instead reconfigure to now verify deleter/writer MACs having the next
upstream deleter/writer middlebox as the expected author of the corresponding MACs. This could imply that the
upstream endpoint enters the role of author of these MACs.

NOTE: By thetrandations made by the leaving middlebox, the downstream entity can till expect to receive the
same hbh_i d aswas previoudy used by the leaving middlebox.

An entity that receives a message whose originator or author isa middlebox whose current state in the direction the
message was received is gone shall raise afatal unexpect ed_nessage aert and stop further processing.

4.3.9 Message hashes

4391 ClientHello and ServerHello value substitutions

The TLMSP extension contains several fields whose values can be modified at each hop when traversing from one
endpoint to the other. Entities shall use consistent values for these fields when computing verification hashes that
includead i ent Hel | o or Ser ver Hel | o message, as follows.

For Cl i ent Hel | 0 messages:

o M ddl eBoxI nf o entriesinml _i with the attributei nser t ed setto dynami c¢ shall be omitted. The
encoded sizeof M _i shall not be adjusted.

. If present, the value of pr evi ous_enti ty_i d shall be replaced by the octet value zero.

e Theencoded value of hbh_i d shall be replaced by the value 0x00000000 (that is, by the four-octet
representation of zero).

For Ser ver Hel | o messages, the encoded value of hbh_i d shall be replaced as described abovefor Cl i ent Hel | o
messages.

Omission from the verification hashes of the specific values that each entity observes for these fields does not result in a
loss of security as tampering with their values on the wire will cause session establishment to fail.

ETSI

62 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.39.2 Finished hash

When computing the hash that isincluded in the client-server Fi ni shed messages, the processing of IETF

RFC 5246 [1], clause 7.4.9 shall be applied, the only difference being that client and server shall omit certain
information elements that were inserted by middleboxes since the client and server need not have received identical
copies of these messages. M essages that were inserted by middleboxes are recognizabl e via the dedicated message types
used to distinguish middlebox Handshake messages from those of client/server.

Thehandshake_nessages input to the hash calculation shall be as defined in clause 7.4.9 of IETF RFC 5246 [1],
but with the value substitutions described in clause 4.3.9.1 applied and with the following differences.

Thefirst input to the hash shall be theinitial Cl i ent Hel | 0. Additionally if any middleboxes are dynamically
discovered during the handshake, the client shall complete the ongoing hash computation, and include in the TLM SP
extension of thesecond Cl i ent Hel | o (inthepr e_di scovery field, asdefined in clause 4.3.5), a hash of the
messages exchanged with the server up to, but not including, the second C i ent Hel | o following the discovery
phase. At this point, the client and server shall reset the hash calculations to re-start with the inclusion of the second
Cl i ent Hel | o, following the discovery. If there are no dynamically discovered middleboxes, the hash computation
shall just proceed.

NOTE 1: The discovery phase itself is protected by:

L] the server's signature on the initial messages (including the M ddl eboxLi st) asdefinedin
clause 4.3.9.4; and

" the client'sinclusion of messages from the discovery phaseinto thepr e_di scovery field of
second Cl i ent Hel | o.

After a possible discovery phase, the inputs to the hash shall consist of the remaining set of Handshake messagesin
the order which they appeared, except the following, middlebox-related messages:

. MooxCertifi cat eRequest (clause4.3.6.3),Certi fi cat e2Mbox (clause4.3.6.7),Certificate
sent from client to amiddlebox, Certi fi cat eVeri f y2Moox , ChangeC pher Spec, and
TLMSPKey Conf (clause 4.3.7.3) messages,

e TLMSPKeyMat eri al (clause 4.3.7.2) message directed to a middiebox (non-endpoint); and
o MooxFi ni shed (clause 4.3.6.9) messages.

The following middlebox-related messages shall be included (since they are always sent asidentical copiestowards
both client and server):

e theMboxHel | o (clause 4.3.6.1), MooxKeyExchange (clause 4.3.6.5), and MboxHel | oDone
(clause 4.3.6.6);

o theTLMSPKeyMat eri al (clause 4.3.7.2) message directed from one endpoint to the other endpoint.

NOTE 2: Asinof IETF RFC 5246 [1], Hel | oRequest (including MooxHel | oRequest) messages are not
included, as they restart the handshake.

. MooxCerti fi cat e (clause 4.3.6.2) shall be included for middleboxes that present the certificate to both
endpoints, which is the case except when at least one endpoint has requested use_certificate =
f al se in the corresponding entry of the middiebox list.

Between client and server, the server's Fi ni shed message shall include a hash of the client'sFi ni shed message.
The client and server shall use the same labels to prefix the hash input to the PRF asin IETF RFC 5246 [1],
clause 7.4.9.

ETSI

63 ETSI TS 103 523-2 V1.2.1 (2022-03)

4393 MboxFinished hash

This hash computation is used for verification between an endpoint and a middiebox and shall also be done with the
prescribed processing of IETF RFC 5246 [1], clause 7.4.9, with the value substitutions described in clause 4.3.9.1 of the
present document applied as well asincluding the following items, in the order which they were sent/received. First, if
any dynamic middlebox discovery occurs, any message sent during the discovery phase shall be omitted.

NOTE 1: Thisisto ensure that all middleboxes, including dynamically discovered ones, observe the same val ue for
messages included in the hash. Messages exchanged during discovery are till protected by the client
including their hash in the second Cl i ent Hel | 0, as noted above.

Below, the middlebox-specific messages shall be those relating to the middlebox with which the Moox Fi ni shed
message is associated:

e All messagesfromd i ent Hel | o (the ones occurring after the discovery phase, if any, is completed) up to
and including the Ser ver Hel | oDone message.

o MooxHel | o, MooxCertificate, MuoxKeyExchange, MyoxHel | oDone.
o NewboxSessi onTi cket , if available.

e theclient'sCerti fi cat e2lVbox responseto the middiebox, theCerti f i cat e responseto the server and
the corresponding Certi ficateVerify andCertificateVeri fy2Mbox messages.

. thed i ent KeyExchange.
. thetwo TLMSPKey Mat er i al messages, directed between the endpoints.
. ChangeGi pher Spec.

e for the MboxFi ni shed messages between middlebox and the server (only), the following items (in this
order):

- alist of received key material contributions, Lcontri b, 8S defined later in the present clause;

- the client's Fi ni shed message with the server;

- inthe MooxFi ni shed from the server to middlebox (only), also the middiebox's MooxFi ni shed;
. for the MooxFi ni shed message between middlebox and the client (only):

- MooxCerti fi cat eRequest

- the client's Fi ni shed message;

- inthe MooxFi ni shed from middlebox to client (only), also the server's Fi ni shed and the client's
MooxFi ni shed.

For specific middleboxes where at least one of the endpoints have requested use_certificate = "fal se" in
the middlebox list extension, the MboxCer ti fi cat e shall be omitted. Similarly, if at least one of the endpoints have
requested al t _cs for amiddiebox, the MooxKeyExchange for that middiebox shall be omitted.

TLMSPKeyMat er i al messages from the client or server to a middiebox shall not be included. Similarly,
TLMSPKey Conf messages directed to the client and related to a specific middlebox shall not be included.

NOTE 2: These messages are explicitly verified when received.

Except when using session resumption, the input to the hash in the Moox Fi ni shed messages between a middlebox
and the server shall additionally include the concatenated list of al the decrypted cont ent fields from all

reader Contri butions,del eterContributions,andwiterContributions received from client and
server (as part of TLMSPKeyMat er i al messages), ordered according to their associated cont ext _i d.

ETSI

64 ETSI TS 103 523-2 V1.2.1 (2022-03)

Let Cer(i),Csr(i),Cea(i),GCsa(i),Co(i),andCsw(i), bethedecrypted content fields from the client (c) and
the server (s) of ther eader _contri b (r) andthedel ete_contri b (d)orwiter_conti b (w) associated with
context _id=i.

Then thislist shall be:
i) || Gr(in) || [Gea(in) [
Cor(i2) || Gr(ia [| [Ca(iz) || Gsalio2)
i3 || G(isg) [..

where{ 0=i1<i2<... <im} isthe set of contexts for which the middiebox has granted access and where the deleter
contributions (Cea(1j) || Gsa(ij)) areincluded only if the middliebox has delete or write access to the context, and
the writer contributions (Cew(ij) || Gsw(ij)) areincluded only if the middlebox has write access to the context.

NOTE 3: Since all middleboxes have both read and write access to context zero, Cor (0) , Csr (0) , Gea(0)
GCsd(0), Ce(0) , and Gsw(0) will always be present.

The following labels shall be used to prefix the hash input to the PRF:
e fromclient to middiebox, "cl i ent to nbox fi ni shed"
e frommiddlebox to client, "nmbox to client finished"
e fromserver to middlebox, " server to nbox fini shed"

° from middlebox to server, " nbox to server fini shed"

4.3.9.4 ClientHello hash (following dynamic discovery)

This hash, included in the TLM SP extension (the pr e_di scovery asdefined in clause 4.3.5), shall be computed as
the hash of the concatenation of the following messages occurring during the discovery phase:

° Theinitial Cl i ent Hel | o and its TLM SP extension, with the value substitutions described in clause 4.3.9.1
applied.

. Ser ver Hel | o (with extensions, and with the value substitutions described in clause 4.3.9.1 applied).
. Server'sCertificateandCertifi cat eRequest (if present).
. TLMSPSer ver KeyExchange.

° Ser ver Hel | oDone.

4.3.9.5 TLMSPServerKeyExchange hash

This hash value shall be included in TLMSPSer ver KeyExchange structures (TLM SP messages or sub-fields of
messages) directed to the client, and shall be included in the input to the server's and middlebox’s signature related
thereto, as defined in clause 4.3.10.1. The hash shall be computed as the hash of all messages from the most recent
d i ent Hel | o (sent after any possible dynamic middlebox discovery), up to, but not including, the

TLMSPSer ver KeyExhange itself, with the value substitutions described in clause 4.3.9.1 applied. The
cryptographic function defining the hash shall be the hash used to derive the input to the PRF for the purpose of
computing the Fi ni shed verification message as defined in IETF RFC 5246 [1] requires, clause 7.4.9.

NOTE: |ETF RFC 5246 [1] requires that a cipher suite that does not use the default PRF also needsto define a
corresponding hash.

When a middiebox generates a TLMSPSer ver Key Exchange, it shal aso include in the hash, messages that it has
forwarded to the client on behalf of the server, but not messages that it has forwarded on behalf of another middlebox.

ETSI

65 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.3.10 Key generation

4.3.10.1 TLMSPServerKeyExchange

TLMSP uses adlightly modified server key exchange message format, compared to IETF RFC 5246 [1]. The message
shall be used by both server and middiebox when generating a key exchange message directed to the client. The
message includes a hash of previous messages in the handshake and there is further no option for RSA key transport.
The message shall have the following format.

struct {
sel ect (KeyExchangeAl gorithm {
case dhe_dss:
case ecdhe_dss:
Ser ver DHPar ans par ans;
sel ect (certificate_provided) {
case true:
digitally-signed struct {
sel ect (server_generated_nessage) {
case true: opaque hash[hash_l ength];
case false: struct { };
b
opaque client_randoni 32];
opaque server_randoni 32];
Ser ver DHPar ans par ans;
} signed_parans;
case fal se:
sel ect (server_generated_nessage) {
case true: opaque hash[hash_Il ength];
case false: struct { };

}s
b

}
} TLMSPSer ver KeyExchange;

The format difference to IETF RFC 5246 [1] is the additional hash field. Thisvalue shall be computed according to
clause 4.3.9.5 and shall be included in the input to the server's or middiebox’s signature. This signature serves two
purposes. When used by a server, this signature verifies the value of the middlebox lists, both the one received in the
Cl i ent Hel | 0, aswell asthelist returned in the Ser ver Hel | o, protecting from third party modification attempts
during early phases of the handshake. Secondly, when used by the server or a middlebox, it further authenticates any
possible MooxCerti fi cat eRequest, protecting the client's privacy from spoofed requests. When the client or
server has requested amiddliebox to not use_certi fi cat e, or, to use an aternative cipher suite with met hod_i d
= anon, verification of this messageis not possible until in conjunction with the Fi ni shed hash verification. The
value hash_| engt h denotes the output length of the hash function as defined in clause 4.3.9.5.

Since this message is used by both the server and middleboxes, the (implicit) value of
server _gener at ed_nmessage shall be construed accordingly, based on the originator of the message.

Similar to to IETF RFC 5246 [1], certificate requests shall not be allowed from entities not providing certificates.

When the client receivesa TLMSPSer ver KeyExchange, it shal calculate the hash field and verify the signature. If
the signature verification fails, thisindicates the possibility of one or both of:

a) aspoofedCertificateRequest or MooxCertifi cat eRequest, appearing to come from the sender;

b) an unauthorized modification of one of the middliebox lists (the original client list and/or the list claiming
to originate in the server).

Inthis case, the client shall send ahandshake_f ai | ur e alert and terminate the session.

ETSI

66 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.3.10.2 General

During the first stage of the handshake, the server and client exchange random nonces, certificates, and signed
ephemeral public keysintheHel | o, Certi fi cat e, and Key Exchange messages respectively. These are used to
generate the client-server master secret (via a premaster secret) as per IETF RFC 5246 [1] that definesTLS 1.2. To
generate the endpoint-middlebox premaster secret, the same endpoint ephemeral public key shall be re-used but
combined with unique, per-middlebox ephemeral keys. To this end, each middiebox also sends messages

(MboxHel | o, MboxCerti fi cat e) containing the middlebox's nonce and its certificate. Different ephemeral public
keys shall be used by the middiebox for the exchange with the client and the server and both shall be included in the
MooxKeyExchange message.

NOTE 1: Thisisfor two reasons. so that the client and server see identical messages and can therefore include them
in the hash for the confirmation of the integrity of the key exchange; so both the client and the server can
verify that the middlebox has used a different key with the other endpoint.

The client-server premaster secret shall be generated as per clause 8 of IETF RFC 5246 [1].

The client-middlebox premaster secret shall be generated using the ephemeral key and nonce from the client and using
the middlebox ephemeral key and nonces exchanged between middlebox and client.

The server-middlebox premaster secret shall be generated using the ephemeral key and nonce from the server and using
the middlebox ephemeral key and nonces exchanged between middlebox and server.

NOTE 2: Inwhat follows, el and e2 correspond to a pair of entities, not necessarily endpoints. Wheniit is of
importance that one of e1 and/or e2 is an endpint, this will be stressed.

4.3.10.3 Premaster secret and master secret generation

Thepre_mast er _secret _ele2 shared between entitiesel and e2 isgenerated in away specific to the cipher
suitein use; annex A describes the predefined suites. The master key shared between precisely two entities, el and e2
(two endpoints, an endpoint and a middlebox, or two middleboxes), shall be generated as:

mast er _secret_ele2 = PRF(pre_master_secret_ele2,"master secret",id_list || rand_list)[0..47];

where the PRF shall be the same asin clause 5 of IETF RFC 5246 [1] i.e. P_<hash>, with hash determined by the
cipher suite. Here, i d_I i st shall be the hash of the concatenated list of the following identities, in the stated order:

1) theclient'sCertificateorCertificate2Mox message, asavailable, where amiddiebox shall use a
Certificat e2Mbox message directed to itself, if plural client certificate messages are available, followed
by;

2) al middiebox MboxCerti fi cat e messages, as available, in the same order asin the final agreed
middlebox list, followed by;

3) theServerCertificate message, when available.
The same cryptographic hash as that used in the PRF defined by the selected cipher suite shall be applied.

For items 2 and 3, the entire messages (including t ype and | engt h fields) shall be included. If a certificate of some
entity is not available to both entitiesel and e2, due to the client and/or server having set the attribute

use_certifi cat e tofasefor that entity, the certificate shall be replaced by the value of the addr ess field in the
middlebox list extension corresponding to that entity. Further, when el isthe client, to resolve ambiguity (e.g. when the
client provides different certificates to different entities), a (certificate based) client ID shall be considered available to
the entity el (client) and e2 if, and only if:

. e2 isan entity who has made an explicit certificate request to the client (MooxCer ti fi cat eRequest, if
e2 isamiddlebox and Certi fi cat eRequest , if e2 isthe server), in which case the certificate (identity)
to use shall be the one in the client's corresponding response (i.e. Cert i fi cat e2Mbox or Certi fi cat e);
or

ETSI

67 ETSI TS 103 523-2 V1.2.1 (2022-03)

. e2 isamiddlebox who has not explicitly requested a client certificate, but the server has (via
Certificat eRequest), in which case the certificate (identity) to use shall be the one in the client's
corresponding Cer t i f i cat e response.

In all other cases, e2 shall not be considered as having any client certificate available.

EXAMPLE: If middlebox e3 is downstream from middlebox e2 (in the client-server direction) and both
middleboxes have requested client certificates, then although both certificate responses will have
passed e2 (making both certificates "visible" to e2), e2 (and the client e1) will still only use the
certificate included in the response directed to €2, since that isthe only certificate which is
considered as being available.

Therand_| i st shall consist of all random valuesincluded in the Hello message of the client, of al middleboxes and
of the the server, in the following order:

° client. Hell o.random

e ej.MoxHello.client_nboxhell o_random

ej . MooxHel | 0. server _nboxhel | o_random asdefined in clause 4.3.6.1, for each middlebox entity |
=1, 2, ...,Ninthesame order asin the final agreed middlebox list,

. server. Hel | o. random

4.3.10.4 Pairwise encryption and integrity key generation

The encryption and integrity keys for communication between entitiese1 and e2 when el istheclient and e2 isthe

server shall be generated from Secur i t yPar anmet er s. mast er _secret _ele?2 derived asin clause 4.3.10.3
according to:

key_bl ock_ele2 = PRF(SecurityParaneters. master_secret_ele2,
"key expansi on",
SecurityParaneters. e2_random | |
SecurityParaneters.el_random[0..2*T-1];

where T shall be defined asfollows. Lete = SecurityParaneters. enc_key |engthandm =
SecurityParaneters. mac_key length and n = SecurityParaneters.fixed_iv_|engthand
define T = e+n+m Thekey_bl ock_ele?2 shall be partitioned into:

el to_e2 encryption_key[SecurityParaneters. enc_key | ength];
e2_to_el encryption_key[SecurityParaneters. enc_key_ | ength];
el to e2 wite fixed_ |V[SecurityParaneters.fixed_ iv_length];
e2 to el wite fixed |V[SecurityParaneters.fixed_ iv_length];
el to_e2 mac_key[SecurityParaneters. nac_key | ength];
e2 to_el mac_key[SecurityParaneters. nac_key | ength];

NOTE 1: The only messages which make use of the encryption keys are the TLMSPKey Mat er i al and
TLMSPKeyConf nessages. The only security protection that makes use of the |V are a'so when
protecting those two messages, and additionally, whenever computing hop-by-hop MACs.

NOTE 2: Thefi xed_I V values above are generally of different length than that of ther ecor d_| V values

carried in-band with message units, refer to annex A for complete details of 1V construction using the
fixed and pre-record explicit parts.

The two last keys shall be used whenever a standalone MAC isto be computed (without encryption) between el and e2.
When an AEAD transform isin use, this shall be done by only using the MAC-part of the transform, see annex A for
the predefined cipher suites.

NOTE 3: When el and e2 are the endpoints, a message that is correctly authenticated with these keys will have
originated at the endpoint. It has not been altered by a middiebox in transit and it will not have been
accessible by anyone else. These keys are also used when the client (or server) send the
TLMSPKeyMat eri al messages between each other containing the contributions.

ETSI

68 ETSI TS 103 523-2 V1.2.1 (2022-03)
Keys for communication between client (or server) and each middliebox shall be generated in the above way, identifying
the entity e1 with the entity topologically closest to the client and €2 the entity closest to the server.

NOTE 4: These keys, known only to one endpoint and one middlebox, are used in the protection of the
TLMSPKeyMat eri al and TLMSPKey Conf messages containing the contribution. The MAC key is
a so used when a middlebox modifies or inserts new containers or authenticates it via the hop-by-hop
MAC.

When el and e2 are topologically adjacent middleboxes, keys for hop-by-hop MACs shall also be generated in the same
way, now identifying the entity e1 with the entity topologically closest to the client and e2 the entity closest to the
server, and now setting T = m

NOTE5: Thisimpliesthat when el and e2 are both endpoints, or, when precisely one of el and e2 isisan
endpoint, but the other is a middlebox, two pairwise encryption keys and two [Vswill be always
generated, and when anon-AEAD transformis used, two further pairwise MAC keys will also be
generated. When el and e2 are both middlieboxes only a single pair of MAC keys will be generated
since only keys for the hop-by-hop MAC are needed.

On session resumption, the previously established key bl ock _ele?2 shall be refreshed by mixing the existing key
with the new client and server random val ues as defined here;

key_bl ock_ele2_new = PRF(key_bl ock_ele2,
"key expansi on",
SecurityParaneters.client_randomnew ||
SecurityParaneters. server_randomnew)[0..2*T-1]);

which isthen partitioned as stated in the preceding paragraph.

4.3.10.5 Context specific keys

For the context specific keys, the client and server shall generate two pseudorandom partial secrets for each context:
e theclient shall generate a client read secret and a client write secret;
. the server shall generate a server read secret and a server write secret.

Partial secrets for different contexts shall be cryptographically independent.

As specified in clause 4.3.7, these partial secrets are only sent to middleboxes to which the endpoint is willing to
authorize the corresponding access, encrypted and integrity protected with the keys derived in clause 4.3.10.4. Each
party with authorized access to a particular context, i , shall derive values associated with each context as follows:

. client_to_server_reader_enc_key_ i : Encrypt/Decrypt datain direction from the client to server;
. server_to_client_reader_enc_key_i: Encrypt/Decrypt datain direction from the server to client;

e forcontext zeroonly,cli ent _to_server_fixed_|V_O:fixed IV for datain direction from the client to
server;

. for context zeroonly, server _to_client _fixed_|IV_0:fixed IV for datain direction from the server to
client;

. client _to_server_reader_nac_key_i: Computereader MAC for datain direction from client to
server (for non-AEAD transforms only);

. server_to_client_reader_nac_key_i: Computereader MAC for datain direction from server to
client (for non-AEAD transforms only).

Encryption of messages of other contexts than context zero shall usethe samefi xed_I V val ues asthose derived
for context zero.

ETSI

69 ETSI TS 103 523-2 V1.2.1 (2022-03)

When also delete access is granted, two additional keys shall be derived:

. client _to_server_del eter_mac_key_i: Compute deleter MAC for datain direction from client to
server;

. server_to_client_del eter_mac_key_i: Compute deleter MAC for datain direction from server to
client.

When write access is granted, two additional keys shall be derived:

. client _to_server_witer_nac_key_i:Computewriter MAC for datain direction from client to
server;

. server_to_client_witer_nac_key_i:Computewriter MAC for datain direction from server to
client.

NOTE: Insome cases (such as when AEAD cipher suites are used) the client/server read keys and the
client/server read MAC keys are notionally the same key.

After receiving a TLMSPKey Mat er i al message from both endpoints, for each authorized context i , all authorized
parties shall compute the context reader keys for the contexts they can access, usingcl i ent _reader _contri b_i
andserver _reader_contrib_i forcontexti . Thisshall berepeated usingcl i ent _del eter_contrib_i
andserver _del eter_contrib_i forthose entities that have delete or write access the context i , and using
client_witer_contrib_i andserver_witer_contrib_i forthoseentitiesthat have write access to
context i . In more detail, let MRs[j] and MRc[j] bethe random valuesincluded in the MooxKeyExchange sent
directed from the j th middiebox (in network topological order) towards the server and client, respectively, i.e. the
middlebox-selected random valuesincluded inthe ser ver _exch andcl i ent _exch part of the
MooxKeyExchange as defined in clause 4.3.6.5. Notice that by the definition in clause 4.3.6.5 these values are
available to al entitiesin the MooxKeyExchange. For each context i , each authorized party shall use the partial
secrets from client and server to compute two blocks of key material:

reader _key_bl ock_i = PRF(server_reader_contrib_i || client_reader_contrib_i,
"reader keys",

il

Ms[1] || MRe[1] || MRs[2] || MRe[2] || .|| MRS[N || MR[N []
SecurityParanet ers. server _random | |
SecurityParaneters.client_random[0..2*T-1];

del eter_key_block_i = PRF(server_deleter_contrib_i || client_deleter_contrib_i,
"del eter keys",

i

MRs[1] || MRe[1] || MRs[2] || MRe[2] || .|| MRS[N| || MRe[N ||
SecurityParaneters. server_random | |
SecurityParaneters.client_randon)[0..2*m1];

writer_key block_i = PRF(server_witer_contrib_i || client_witer_contrib_i,
"witer keys",
il
MRs[1] || MRe[1] || MRs[2] || MRc[2] || .|| MRS[N| || MRC[N ||
SecurityParaneters. server_random | |
SecurityParaneters.client_randon)[0..2*m1];

where, for context i =0, T = e+n for AEAD transforms, andt = e+mt+n otherwise and for al other contextsi , T
=e for AEAD transforms, andt = e+m wherei isthe octet context identifier. Eachr eader _key_ bl ock i
above shall be partitioned according to the valuesm and T into:

client _to_server_reader_enc_key i[SecurityParaneters. enc_key | ength];

client _to_server_reader_nac_key i[SecurityParameters. nac_key | ength];
server_to_client_reader_enc_key i[SecurityParanmeters.enc_key |l ength];

server_to_client_reader_nac_key i[SecurityParaneters. nmac_key | ength];

client _to_server_fixed |V _O[SecurityParamnmeters.fixed_iv_|ength]; (forcontextzero)
server_to client _fixed |V O SecurityParaneters.fixed_ iv_|ength]; (forcontextzero).

ETSI

70 ETSI TS 103 523-2 V1.2.1 (2022-03)

Further, each del et er _key_ bl ock_i shall be partitioned into:

client _to_server_del eter_mac_key i[SecurityParaneters. mac_key_ | ength];
server_to_client_del eter_mac_key i[SecurityParameters. mac_key | ength];

andeachwri t er _key_ bl ock_i shal be partitioned into:

client _to_server_witer_nmac_key i[SecurityParameters. nac_key | ength];
server_to client_witer_mac_key i[SecurityParanmeters. mac_key | ength];

Thederived f i xed_I V valuesfor context zero shall be used for all contexts, when the cryptographic transform
requires afixed IV. Due to the additional inclusion of the sequence number in the final IV, collsions are till avoided.

On session resumption, the previoudly established keys, ther eader _key_bl ock_i,del eter _key_ bl ock i,
andwriter_key bl ock i, foreachcontexti, shall berefreshed by mixing the existing secrets with the new
client and server random values as defined here:

reader _key_bl ock_new i = PRF(reader_key_bl ock_i,
"reader keys",
il
SecurityParaneters. server_random new | |
SecurityParaneters.client_randomnew)[0..2*T-1];

del et er _key_bl ock_new_i = PRF(del eter_key_bl ock_i,
"del eter keys",
il
SecurityParaneters. server_random new | |
SecurityParaneters.client_randomnew)[0..2*m1];

witer_key_block_new i = PRF(witer_key_block_i,
"witer keys",
il
SecurityPar anet ers. server _random new | |
SecurityParaneters.client_randomnew)[O0..2*m1];

which are then partitioned as stated in the immediately preceding paragraph.

4.3.10.6 Key extraction

The functionality of this clause shall be optional to implement and use. When implemented, the functionality of this
clause may be used by an application to extract key material for other purposes. Specifically, one or more additional key
blocks shared uniquely between entities with a certain access right to a context i shall then be extracted as follows:

extracted_reader _keybl ock i = PRF(reader_key_ bl ock_i,
"TLMSP reader key extraction",
SecurityParaneters. server_random | |
SecurityParaneters. client_random ||
[context _value_length || context_value])[0..N1];

extracted_del eter _keybl ock_i = PRF(del eter_key_bl ock_i,
"TLMSP del eter key extraction",
SecurityParaneters. server_random | |
SecurityParaneters.client_random ||
[context _value_length || context_value])[0..N1];

extracted witer_keyblock i = PRF(witer_key block i,
"TLMSP witer key extraction",
SecurityParaneters. server _random | |
SecurityParaneters. client_random ||
[context _value_length || context_value])[0..N1];

where all parameters named asin clause 4.3.10.4 are the same, and where cont ext _val ue shall be an optiona string

of lengthcont ext _val ue_I| engt h octets. Nisthe number of desired output octets. Different applications of this
function for a given writer, deleter, or reader key block shall use distinct values of cont ext _val ue.

ETSI

71 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.4 The Alert protocol

441 General

All alert messages before the Ser ver Hel | 0 message has been observed shall follow and be limited to the definitions
in[1]. After the transmission or receipt by an entity of aSer ver Hel | o containing a TLMSP extension, al aert
messages that entity originates shall use the containered format described in clause 4.2.3.1.6 and will thusindicate the
entity ID of the entity originating the alert.

4.4.2 Alert message types

Theset of Al ert protocol messages extend IETF RFC 5246 [1] asfollows:

enum {
close_notify(0), unexpected_nessage(10),
. /* the existing TLS alert codes */
m ddl ebox_route_failure(170), /* mddl ebox fails to connect to next hop */
m ddl ebox_aut hori zation_failure(171), /* endpoi nt does not accept m ddl ebox */
unknown_cont ext (172), /* entity does not recognize a context or its purpose */

unsupported_context (173), /* m ddl ebox can not performrequested operation on context */
m ddl ebox_key_verify _failure(174),

bad_reader _nac(175), /* reader MAC failed to verify */
bad_del eter_mac(176), /* ditto, deleter MAC */
bad_writer_mac(177), /* ditto, for witer MAC */
m ddl ebox_key_confirmation_fault(178), /* failure to verify key-share */
m ddl ebox_suspend_noti fy(179) /* m ddl ebox | eaves the session */
(255)

} AlertDescripton;

For existing Al ert messages, clause 7.2 of IETF RFC 5246 [1] shall apply. The use of thebad_r eader _nac,
bad del eter _mac,bad witer nac,andbad _record nac aertsaredescribed in clause 4.2.2.2.

Them ddl ebox_suspend_not i fy aert isasofter version of the MooxLeaveNot i fy message. Thisaert
signals that the middlebox will remain on-path, but only to verify and generate hop-by-hop MACs without performing
any message inspection.

Thel evel field of the additional messages shall be assigned an Al ert Level valueasfollows:
. m ddl ebox_suspend_noti fy:warni ng(1);

. m ddl ebox_route_failure, m ddl ebox_aut hori zati on_fail ure, unknown_cont ext,
unsupported_cont ext,m ddl ebox_key verify failure, bad_reader_nac,
bad witer_mac,andm ddl ebox_key confirmation_fault:fatal (2).

The other Al ert levelsshall be asdefined in clause 7.2 of IETF RFC 5246 [1].

If amiddlebox encounters afatal TLMSP or connectivity related error which leads to it closing the connection, prior to
doing so, the middlebox shall sendacl ose_noti fy aert in both directions.

ETSI

72 ETSI TS 103 523-2 V1.2.1 (2022-03)

4.5 The ChangeCipherSpec protocol
The single message of the ChangeCi pher Spec protocol shall be as specified in clause 7.1 of IETF RFC 5246 [1].
In TLMSP, there are the following differences in effects (semantics) of issuing the ChangeCi pher Spec message.

e Thenegotiated keys and cipher suite as well as any negotiated record size extention as per IETF RFC 8449 [7]
shall be applied to the contents of the TLMSPKeyMat er i al and TLMSPKey Conf messages as described in
clauses 4.3.7.2 and 4.3.7.3, even though these messages occur before ChangeCi pher Spec. No record layer
protection of these message shall however be performed.

. Sequence humbers are not defined prior to ChangeCi pher Spec, but shall comeinto effect in the usual way
following this message.

ETSI

73 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex A (normative):
Defined cipher suites

Al General

The cipher suites defined in this annex are only defined for TLM SP. When using the fallback mechanisms of annex C,
standard TLS 1.2 cipher suites shall be used.

A.2 Key Exchange

The cipher suites defined below in clauses A.3to A.5 are defined for TLM SP use. One of the following key exchange
methods as defined in TLS 1.2 [1] shall be used.

. ECDHE _ECDSA. One of the following curves should be used: secp256r 1, secp384r 1, secp512rl
(defined in FIPS 186-4 [9]), x25519 or x448 (defined in IETF RFC 7748 [5]). This key exchange method
shall be supported.

. DHE_DSS. One of the following groups should be used: f f dhe2048 or f f dhe3072 (defined in IETF
RFC 7919 [6]).

A3 AES {128,256} GCM_SHA{256,384}

A.3.1 General

The cipher suite TLMSP_* W TH_AES {128, 256} GCM SHA{ 256, 384} shall be the same as the corresponding
TLS *_ W TH_AES {128, 256} _GCM SHA{ 256, 384} cipher suite, asdefined in clause 3 of IETF RFC 5288 [8]
or clause 3.3 of IETF RFC 5289 [19] (where * shall be replaced by one of ECDHE _ECDSA or DHE DSS, key exchange
mechanisms as defined in clause A.2 of the present document) except that the 1V shall be determined as described
below. The cipher suitesTLMSP_* W TH_AES 256_GCM SHA256 do not have a corresponding TLS 1.2 cipher
suite, but are defined using the same approach used in [8] and [19], with the same key exchange and 1V substitutions
indicated above.

The 1V shall be calculated as follows:

1) The 64-bit (8 octet) seq_aut hor context-independent sequence number of the author (i.e. the value
seq_t x for an entity generating an outbound message unit, or, seq_r x[e_i d] , for an entity processing a
received message unit havinge_i d asitsauthor) shall be left-padded with the one-octet entity ID of the
author, a one-octet value defining the type of MAC computed, and two zero-octets to form a 12-octet value
IV =e_id || mac_type || Ox00 || Ox00 || seq_author.

2) Compute a 12-octet fixed 1V-value according to clause 4.3.10.4 or 4.3.10.5 (depending on whether context
specific keys or only pairwise keys are used), let theresult bewri te_| V.

3) Formthefinad IVaslV = 1V XOR wite_ |IV.

For the reader MAC (i.e. the MAC built in to the AES GCM AEAD transform), mac_t ype shall have the value 0x52
(ASCII code of the character "R"). Definition of mac_t ype for the other MACs shall be as defined in clause A.3.2.
Only thee_i d input of the IV construction process shall be explicitly signalled, thusr ecor d_i v_I engt h shall be
1

NOTE 1: ThelV format above is compatible with that of TLS 1.3 [8], except for theinclusion of e_i d.

NOTE 2: Internally, AES-GCM will use the above | V as the 96 most significant bits in the counter.

ETSI

74 ETSI TS 103 523-2 V1.2.1 (2022-03)

NOTE 3: Instep 2, pairwise keys are used only for the TLMSPKey Mat er i al and TLMSPKeyConf messages,
and when forming the IV' is done as part of stand-alone MAC computation according to clause A.3.2. In
all other cases, context-specific keys are used.

All TLMSP entities shall support this cipher suite.

A.3.2 Additional MAC computations

When generating additional MAC values, i.e. the writer and hop-by-hop MAC values, only the GMAC function of
AES-GCM shall be used as per NIST SP 800-38D [10] with the appropriate key (the writer key, the MAC key shared
only with an endpoint, or the key shared with the next hop entity, respectively). The input (MAC_I NPUT) shall consist
of the input data as defined in clauses 4.2.7.2.2 and 4.2.7.2.3, depending on which MAC to compute.

When computing or verifying a deleter, writer, or hop-by-hop MAC, the valuemac_t ype of thelV' shal havethe
values 0x44, 0x57, and 0x48, respectively. This corresponds to the ASCII codes for the letters D", "W", and "H",
respectively.When verifying a received deleter (or writer) MAC, thel V' shall use the entity 1D and sequence number
of the deleter (or writer) author. This will aways be the upstream closest entity with deleter (or writer) access to the
corresponding context.

When verifying areceived hop-by-hop MAC value, the | V' shall use the entity ID and expected next global sequence
number of the upstream neighbour.

When computing the deleter or writer MAC of an outbound message unit, or the hop-by-hop MAC of an outbound
record, the | V' shall always use the author's entity identity. For the deleter MAC, writer MAC, or the hop-by-hop
MAC of arecord for a protocol that does not use containers, seq_aut hor shall be the author's current global transmit
sequence number. For the hop-by-hop MAC of arecord for a protocol that uses containers, seq_aut hor shall bethe
author's global transmit sequence number corresponding to the first container in the record.

A4 AES {128,256} CBC_SHA{256,384}

The cipher suites TLMSP_DHE _DSS W TH_AES 128 CBC_SHA256 and

TLVMSP_DHE _DSS W TH_AES 256_CBC_SHA256 shall be the same as the corresponding

TLS DHE DSS W TH_AES {128, 256} _CBC_SHA256 cipher suites defined in clause A.5 of IETF RFC 5246 [1],
except that the IV shall be determined as described below. The cipher suite

TLMSP_DHE DSS W TH_AES 256_CBC_SHA384 does not have a corresponding TLS 1.2 cipher suite, but is
defined in the same manner, except that the PRF is P_SHA384. The cipher suites

TLMSP_ECDHE_ECDSA W TH_AES 128 CBC _SHA256 and

TLMSP_ECDHE _ECDSA W TH_AES 256_CBC_SHA384 shall be the same as the corresponding

TLS ECDHE _ECDSA W TH_AES {128, 256} _CBC_SHA{ 256, 384} cipher suites defined in clause 3.1 of

IETF RFC 5289 [19], except that the IV shall be determined as described below. The cipher suite
TLMSP_ECDHE_ECDSA W TH_AES_256_CBC_SHA256 does not have a corresponding TLS 1.2 cipher suite, but is
defined in the same manner. In al cases, the key exchange mechanisms are as as defined in clause A.2 of the present
document.

Thel Viscarried partialy explicitly in the protected fragment and shall have the following form: 1V = ((e_id ||
seq_author) << 56) XOR wite_ IV where

. e_i d shal be the one-octet entity identity for the originator;
. seq_aut hor shall bethe 64-bit context-independent sequence number of the author;

e wite_ |V shall beal6-octet fixed IV-value generated according to clause 4.3.10.4 or 4.3.10.5 (depending
on whether context specific keys or only pairwise key are used).

Only the e_i d input to the IV construction process shall be explicitly signalled, thusr ecor d_i v_I engt h shall be
1

NOTE: Inthiscase, noIVsfor the separate deleter, writer, and hop-by-hop MACs are needed.

ETSI

75 ETSI TS 103 523-2 V1.2.1 (2022-03)

A5 AES {128,256} CTR_SHA{256,384}

This cipher suites TLMSP_* W TH_AES {128, 256} CTR _SHA{ 256, 384} consist of the counter-mode
encryption part of AES_ GCM (see clause A.3 of the present document), in conjunction with the HMAC_SHA?256 (or
SHA384) MAC asdefined in IETF RFC 5246 [1], for AES_CBC_SHA256. For cipher suites ending with _SHA2586,
the PRF shall be P_SHA256 as defined in [1]. For cipher suites ending with _SHA384, the PRF shall be P_SHA384,
as defined in [1].

Thel V for encryption shall be generated as defined in clause A.3 of the present document.
NOTE 1: This cipher suite has no analoguein TLS 1.2.

NOTE 2: Inthiscase, no IVsfor the separate deleter, writer, and hop-by-hop MACs are needed.

A.6 Additional cipher suites

The cipher suite TLMSP_NULL_W TH_NULL_NULL may be used only for testing purposes, providing no security. In
this case no sequence number maintenance is needed. While it would be possible to omit the explicit IV (carrying the
1-octet entity 1D oth the author), the 1V shall still be present on all messages following ChangeCi pher Spec,
allowing a uniform message format.

The cipher suites TLMSP_ECDHE_ECDSA W TH_NULL_SHA256 and TLMSP_DHE_DSS W TH_NULL_SHA256
provides only integrity protection using the integrity part of the cipher suite defined in clause A.5 and should not be
used without careful consideration. These cipher suites require sequence number management, and for each, the PRF is
P_SHA256 asdefined in IETF RFC 5246 [1].

A.7 Summary of security parameters

Table A.1: Summary of security parameters

Cipher suite parameter length (*_| engt h)

(Annex reference) enc_key mac_key fixed_iv bl ock record_iv

GCM (A.3) 16 or 32 =enc_key 12 16 1
(see note)
CBC (A.4) 16 or 32 =enc_key 16 16 1
CTR (A.5) 16 or 32 =enc_key 16 16 1
NULL_SHA256 (A.6) 0 32 0 n/a 1
NULL _NULL (A.6) 0 0 0 n/a 1
NOTE: For AEAD transforms, a separate MAC key is only needed for the additional deleter, writer, and
hop-by-hop MACs.

By the notation * _| engt h in the heading of Table A.1, it isto be understood that all parameter names (e.g.
enc_key) areto be suffixed by _| engt h in order to cross-reference other parts of the present document where the
corresponding parameter is being used.

EXAMPLE: The parameter enc_key isin other parts of the present document denoted enc_key | engt h.

A.8 Cipher suite identifiers

Table A.2: TLMSP cipher suite identifiers

Name Identifier
TLMSP_NULL_W TH_NULL_NULL {0x00, 0x00}

TLMSP_ECDHE_ECDSA_W TH_NULL_SHA256 {0x00, 0x01}

ETSI

76

ETSI TS 103 523-2 V1.2.1 (2022-03)

Name

Identifier

TLMSP_DHE_DSS_W TH_NULL_SHA256

{0x00, 0x02}

TLMSP_ECDHE_ECDSA_W TH
AES_128_GCM_SHA256

{0x00, 0x03}

TLMSP_DHE_DSS_W TH
AES_128_GCM SHA256

{0x00, 0x04}

TLMSP_ ECDHE_ECDSA_W TH
AES _256_GCM SHA256

{0x00, Ox05}

TLMSP_ DHE DSS _W TH
AES_256_GCM SHA256

{0x00, Ox06}

TLMSP_ ECDHE_ECDSA_W TH
AES_256_GCM SHA384

{0x00, 0x07}

TLMSP_ DHE DSS _W TH
AES_256_GCM SHA384

{0x00, 0x08}

TLMSP_ ECDHE_ECDSA_W TH
AES_128_CBC_SHA256

{0x00, 0x09}

TLMSP_ DHE DSS _W TH
AES_128_CBC_SHA256

{0x00, Ox0A}

TLMSP_ ECDHE_ECDSA W TH
AES_256_CBC_SHA256

{0x00, Ox0B}

TLMSP_ DHE DSS _W TH
AES_256_CBC_SHA256

{0x00, Ox0C}

TLMSP_ ECDHE_ECDSA W TH
AES_256_CBC_SHA384

{0x00, Ox0D}

TLMSP_ DHE DSS _W TH
AES_256_CBC_SHA384

{0x00, Ox0E}

TLMSP_ ECDHE_ECDSA W TH
AES_128_CTR SHA256

{0x00, Ox0F}

TLMSP_ DHE_DSS _W TH
AES_128_CTR SHA256

{0x00, Ox10}

TLMSP_ ECDHE_ECDSA_W TH
AES 256_CTR_SHA256

{0x00, Ox11}

TLMSP_ DHE DSS _W TH
AES 256_CTR_SHA256

{0x00, 0x12}

TLMSP_ ECDHE_ECDSA W TH
AES_256_CTR_SHA384

{0x00, 0x13}

TLMSP_ DHE_DSS _W TH
AES_256_CTR_SHA384

{0x00, Ox14}

A9

Future extensions

To provide protection against keystream reuse and vulnerabilitiesin AEAD transforms, any future extension to the
present document in the form of additionally defined cipher suites shall comply with the following rules:

a)

Any |V used to create a protected TLM SP message unit (arecord or a container) during a session shall:
1) include aper session fixed, or, per message unit variable nonce, of at least 64-bits of entropy;
2) enable determining the message unit author by areceiving entity;

3) never repeat, for any fixed value of (e_i d, key_i d) wheree_i d isentity identity of the message
author and key _i d is some unique identifier for the key used by the author.

ETSI

77 ETSI TS 103 523-2 V1.2.1 (2022-03)

b) For AEAD transforms, only onesthat allow separation of the encryption function from the MAC-value
computation shall be used in TLMSP.

Requirements a)2) and a)3) may be implemented by including (e_i d, seq[¢]) inthelV using amapping whichis
one-to-one with respect to (e_i d, seq[¢]) .The predefined cipher suites have been designed to allow the same IV
structure to be used for reader MAC, deleter MAC, writer MAC, and hop-by-hop MAC, in a secure manner. Future
extensions to the present document may instead opt to specify two separate 1Vs: one for the hop-by-hop MAC and
another 1V for the other three MACs, or, specify the use of four completely separate IVs. The IV for the reader MAC
shall always be the one included in the Fragment part of the TLM SP record/container (see clause 4.2.7.1) and the
location of any additional 1V(s) shall then be specified.

ETSI

78 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex B (normative):
Alternative cipher suites

B.1 General

The alternative cipher suites defined in this annex shall be identical to those of clauses A.3, A.4 and A.5, apart from the
key exchange and authentication during the handshake. The use of one of the alternative cipher suites shall be signalled
by using the corresponding cipher suite identifier as those defined in annex A, but additionally setting the value of

ci pher _suite_opti ons inthe middlebox list extension as defined in clause 4.3.5t0 "al t er nat i ve", and, to set
theet hod_i d of theal t _cs field to indicate which alternative cipher suite to use: "anon", "psk" or "gba".
ClausesB.2.1, B.2.2 and B.2.3, respectively, provide normative definitions of each of the three choices.

NOTE 1: Sincethe middlebox lists contains one individual value of ci pher _sui t e_opti ons valuefor each
middlebox, thisimplies that each middlebox's use of the alternative cipher suites can can be configured
individually. Since the only difference lies in the key exchange and authentication mechnisms toward the
endpoint, and not in the bulk data protection algorithms, this does not cause any interoperability
problems. Simililary, while the endpoints (client and server) may individually choose different alternative
cipher suites, since it only affects the key exchange and authentication between the middliebox and that
endpoint, also thisimplies no interoperability issues.

Middleboxes who are not configured by an endpoint to use aternative cipher suites, shall use the key exchange and
authentication mechanisms exactly as defined in annex A, together with certificates for communication with that
endpoint.

A middlebox which accepts the endpoint's suggested use of the alternative cipher suite shall acknowledge this by setting
thevalueof cli ent _alt _cs,andlor,server _alt _cs (asapropriate) inthe MooxHel | o to indicate
"al ternative".

NOTE 2: None of the presently defined alternative cipher suites rely on certificates and a future extension with an
alternaive cipher suite using certificates could cause conflictswiththeuse_certi fi cat e parameter,
see clause 4.3.5.

B.2 Defined alternative cipher suites

B.2.1 Anon

The endpoint requesting this alternative cipher suite shall set the met hod_i d of theal t _cs field of the
corresponding middliebox list entry in the hello message to indicate "anon”.

The key exchange corresponding to the selected cipher suites of annex A shall be used, but without authentication.
Security aspects of not authenticating the endpoint shall be considered before using this alternative cipher suite.

B.2.2 Preshared keys

B.2.2.1 General

In this case, the client or server is assumed to have a pre-shared key with the middlebox.

ETSI

79 ETSI TS 103 523-2 V1.2.1 (2022-03)

B.2.2.2 Technical Details

B.2.22.1 ClientHello and ServerHello

The endpoint (client or server) requesting this alternative cipher suite shall set themet hod_i d of theal t _cs field of
the corresponding middlebox list entry to indicate "psk". The endpoint shall also include in the field
credential _hint oftheal t _cs field, of the middlebox list extension, an identifier for this key.

B.2.2.2.2 MboxKeyExchange

This message shall be generated and used as normally, except that the endpoint that requested the alternative cipher
suite shall ignore the included key exchange information (since the keys will be used on a pre shared key instead).

B.2.2.2.3 TLMSPKeyMaterial

When generating keys, the preshared key, PSK, indicated by cr edent i al _hi nt shall take the place of the master
key of clause 4.3.10.4, i.e.:

key_bl ock_ele2 = PRF(PSK, "key expansion",
SecurityParaneters. e2_random | |
SecurityParaneters. el_randon).

From this key block encryption keys and MAC keys shall be obtained as also describein clause 4.3.10.4.
Authentication of the client toward the middlebox is then assured by successful verification of the associated MAC
values.

No other messages are affected by this extension.

B.2.3 GBA

B.2.3.1 General

This aternative cipher suite shall only be used between the client and a middlebox.

The entire clause B.2.3 specifies an additional authentication and key exchange method, specific to Mobile Network
Operators (MNO). The mutual authentication between middlebox and client (or server) obtained through this method
provides stronger assurance that the middlebox services are only provided to clients who subscribe to those MNO
services. It also, if applicable, enables more robust charging of the services.

When implementing TLM SP, clients equipped with USIM cards, such as smartphones, should implement and use the
extension described whenever it wishes to receive services by middleboxes provided by aMNO (Mobile Network
Operator).

EXAMPLE: An example use case is when connecting to an internet server viathe MNO's network.

NOTE: Theclient isassumed to have prior knowledge of those middleboxesinthe M ddl eboxLi st (or the
server) that are associated with the MNO and therefore which middleboxes can support this extension.
How the client obtains this prior knowledge is outside the scope of the present document, but it can be
done in conjunction to MNO configuration of the client. If the client incorrectly assumes a certain
middlebox supports these extensions (or not), no adverse security issues result; an error alert will be
raised or afallback to standard (certificate based) TLMSP will occur.

B.2.3.2 Technical details

B.2.3.2.1 General

A client wishing to make use of this aternative cipher suite shall first perform GBA (Generic Bootstrapping
Architecture) bootstrapping with the BSF (Bootstrapping Server Function) as defined in the GBA specification ETSI
TS 133 220, clause 4.5.2 [11].

ETSI

80 ETSI TS 103 523-2 V1.2.1 (2022-03)

A middlebox or server supporting this extension is viewed as a NAF (Network Application Function) in GBA
terminology and is assumed to follow the GBA-specified procedures, observing the details of this entire clause B.2.3.

B.2.3.2.2 ClientHello

To indicate use of the alternative cipher suite, the client shall set thenmet hod_i d of theal t _cs field of the
corresponding middlebox list entry to indicate "psk". The client shall also includeinthefield cr edent i al _hi nt of
theal t _cs field, of the middlebox list extension, an identifier for the key to used, as follows:

credential _hint = B-TID,

where B- Tl Disthe B-TID value obtained during GBA bootstrapping, defined in clause C.2.1.2 of ETS
TS 133220 [11], i.e. an encoded Network Access Identifier (NAI) of format:

base64encode(RAND) @BSF_server s_domai n_nane
NOTE: All stringsinthe GBA specification are encoded in UTF-8 format.

When this extension ispresent inthe Cl i ent Hel | o but anon-empty B-TID, a middliebox supporting this extension
shall contact the BSF asindicated by the B- Tl D of the extension data and (unless already available) request the NAF-
key (Ks_NAF), as defined in clause 4.5.3 [11]. When deriving or requesting the Ks_NAF, the client, middiebox (NAF),
and the BSF shall use the same middlebox address asthe NAF- | d (the"addr ess™" field, excluding the one-octet

"m ddl ebox_i d") asdescribed in the middiebox extension list defined in clause 4.3.5 of the present document.

At this point, any the client and any middlebox (or server) that supports this extension will have or be able to derive a
pairwise unique, shared key Ks_NAF. This shared key shall be used asin clause B.2.3.2.4.

B.2.3.2.3 MboxKeyExchange

This message shall be generated and used as normally, except that the client shall ignore the included key exchange
information (since the keys will be used on a pre shared keyinstead).

B.2.3.24 TLMSPKeyMaterial

When generating keys shared between the client and the middlebox using this method, the associated Ks_ NAF shall be
used in place of the master secret of clause 4.3.10.4, i.e.:
key_bl ock_ele2 = PRF(Ks_NAF, "key expansion",
SecurityParanet ers. m ddl ebox_random | |
SecurityParaneters.client_randon

where el isthe client and €2 the middlebox. From this key block encryption keys and MAC keys shall be obtained as
also describein clause 4.3.10.4. Authentication of the client toward the middlebox is then assured by successful
verification of the associated MAC values.

GBA-produced keys have an associated lifetime that shall be respected by this TLMSP profile.

EXAMPLE: Thisimpliesthat the client shall not attempt to resume a session where the underlying GBA keys
(Ks_NAF) have expired.

No other messages are affected by this authentication method.

ETSI

81 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex C (normative):
TLMSP alternative modes

C.1 Fallback to TLS 1.2

The specification of this annex shall be mandatory to support fallback for TLMSP clients and middleboxes.

Where a client does not know if the server supports TLMSP, afallback to TLS 1.2 may be performed as follows. When
aserver lacks TLM SP support, another option isto fallback to TLM SP proxying, described in clause C.2 of the present
document. The fallback mechanism of the current annex shall be followed if the client has not indicated that it accepts
TLMSP proxying using the Hel | o extension in clause 4.3.5, whose usage is defined in clause C.2.

In the signalling below, the absence of the TLM SP middlebox list extension in the Ser ver Hel | o indicatesto client
and middleboxes that the server does not support TLM SP. In this case, the middleboxes shall remain on-path, but in a
passive capacity; forwarding the messages between client and server, allowing the handshake to complete, so that the
connection can be established and the client can cryptographically verify that the server does not support TLMSP.

CLI ENT M DDLEBOX 1 . M DDLEBOX N SERVER
dientHel l o(TLMSP(ni _i))

Server Hel | o()
Certificate*
Ser ver KeyExchange
Server Hel | oDone
e O------------ O------------- (X)-----mmmmmm - - -

Certificate*
Cl i ent KeyExchange
CertificateVerify*

ChangeCi pher Spec
Fi ni shed

ChangeCi pher Spec

Fi ni shed
S 0------------ O-------------- O------------- -
TLSAl ert(cl ose_notify)*
------------ [o L L e R
New TLS Handshake*
T T T T >
Application Data Application Data
T T L T R pep PR >

NOTE: The symbols *, o0 and x are defined in the same way as in Figure 6.

Figure C.1: Handshake for TLS 1.2 fallback

After the handshake above is complete, the client may send aTLS cl ose_not i fy dert to the server and may restart
the negotiation directly with the server, without the middleboxes now taking part in the session. The client may omit
this Alert, to indicate it permits the middleboxes to remain on-path, continuing to forward application data.

ETSI

82 ETSI TS 103 523-2 V1.2.1 (2022-03)

If theclient indicated inthe Cl i ent Hel | o that it accepts TLM SP-proxying, the last middliebox before the server may
offer to step in asa TLMSP proxy which leads to alternative signaling as defined in clause C.2.

C.2 Fallback to TLMSP-proxying

C.2.1 General

The procedure defined in clause C.2.2 of the present document may be supported by TLM SP clients and may be
supported by middlieboxes. The procedure shall not be used whenthe Cl i ent Hel | o doesnot containa TLMSP
proxying extension, as defined in clause 4.3.5. The server's lack of support for full TLMSP will be indicated by the
absence of the TLMSP middlebox list extensionin the Ser ver Hel | o.

If middleboxes were dynamically discovered and the client accepts these middleboxes, the client shall include the
complete list of middleboxes in the computation of the verification hash of the Fi ni shed message, exchanged with
the server. Thisis enabled viathe Ser ver Unsuppor t message from the last middiebox, see clause 4.3.2.3.1.

C.2.2 Fallback procedure

The principle behind the signalling is that the last middiebox, N, stepsin and proposesto act asa TLMSP server, S
toward the client, while running TLS 1.2 with the server. Other middleboxes remain as normal TLM SP middleboxes.

CLI ENT ML Mh- 1 Mh SERVER
(= SERVER S')

dientHell o(TLMSP(L), TLMSP_proxyi ng)

Server Hel | o(TLMSP_pr oxyi ng*)
Certificate*

Ser ver KeyExchange
CertificateRequest*

Server Hel | oDone

Server Unsupport(entity id,

hbh_i d,

m ddl ebox_i nf 0)
Server Hel | o(TLMSP(L),

TLMSP_proxyi ng) (1)

Certificate*
MooxCerti fi cat eRequest *
Ser ver KeyExchange
Server Hel | oDone

MooxHel | o
MooxCertificate**
<MooxCerti fi cat eRequest *
<MboxKeyExchange>
MooxHel | oDone

MooxHel | o
MooxCertificate**
<MboxCertificat eRequest*
<MoxKeyExchange>
MooxHel | oDone

ETSI

83 ETSI TS 103 523-2 V1.2.1 (2022-03)

Certificate*
C i ent KeyExchange (2)
CertificateVerify*

Certificate2Mox[M] *
Certificate2Mox[.]*
Certificate2Mox[Mh-1]*
CertificateVerify2Moox[ML] *
CertificateVerify2hmox|.]*
CertificateVerify2Mox[Wn-1]*

TLNBPKeyMaterial [C] TLNBPReyGont [
TLNBPKeyMaterial [C S] A ”
------------ O----=-=======0-="-=-"==-=-"=-=-=-=-=--->
TLMSPKeyConf [..] TLMSPKeyMaterial [S, .]
TLMSPReyConf (M A TLMSPKeyMat er i al [S , M)
S L R O------=-mmm o

ChangeCi pher Spec /* To WMh=S */

Fi ni shed
------------ O-----========0O---="=-=-==-=-==-=--->
ChangeCi pher Spec /* To S */ (3)
Fi ni shed
------------ o L o L e ¢ L e

MooxFi ni shed[C, ML] MooxFi ni shed[ML, S']

------------ D e * L
MooxFi ni shed[C, .] MooxFi ni shed[.., S']
------------ (R D G I

(4) /* From S */ ChangeC pher Spec
Fi ni shed

ChangeCi pher Spec /* From Wh=S */
Fi ni shed

MooxFi ni shed] .., C] MooxFi ni shed[S', .}

O O-----=-------- O------=----=-=----
MooxFi ni shed[ML, C] MooxFi ni shed[S', ML]
R R O-----==-=-==-=-----

ETSI

84 ETSI TS 103 523-2 V1.2.1 (2022-03)

<-Rest of TLS Handshake->
TLMSPDel egat e(ver _t oken) (8)

------------ O---------=--=0------=-=--=-=Q0---------=-------->
Appl i cation Application Application
Dat a Dat a Dat a
S R R SX<--- - - - (TLS)------ >

NOTE: The symbols *, o0 and x are defined in the same way as in Figure 6.

Figure C.2: Handshake for TLMSP proxying

With reference to the numeralsin the signalling above, the following steps shall be taken:

1)

2)

3

4)
5)

6)

7)

8)
9)

The last middlebox isthefirst to receivethe Ser ver Hel | o and recognizes the absence of the TLMSP
middlebox list extension. Since the client indicated acceptance for proxying (via the presence of the
TLMSP_pr oxyi ng extensioninthe Cl i ent Hel | 0), the last middlebox informs about the server not
supporting TLMSP through a Ser ver Unsupport message and offersto act asa TLMSP proxy by echoing
the client's extension in astandard TLS Ser ver Hel | o, whichis sent alongside forwarding the original

Ser ver Hel | o, from the actual server. The middlebox Mh notes the cipher suites proposed by the client for
usein step 6.

If the client accepts TLMSP_pr oxyi ng, it shall now:
- perform a standard TL S session handshake with the original server; and

- perform a TLM SP handshake with the middlebox Mh acting as a TLM SP server and other middleboxes
acting as standard TLM SP middleboxes.
If the client does not accept it, it may close the connection.

The client-side TLS handshake with the original server is completed. The client-side TLM SP handshake is
also completed.

Server-side also completes.

The client shall instruct the last middlebox to take care of proxying by setting up a TLS 1.2 session with the
server. Included in this message shall be a (secured) delegation token and a verification token, defined in
clause C.2.3.

The middlebox Mh shall now, acting asa TLS client, initiate TLS setup with the server. Inthe TLS
ClientHell o of M1, aTLMSP_del egati on extension shall beincluded if, and only if, the server's
previous Ser ver Hel | o (step 1) contained the TLMSP_pr oxyi ng extension. The TLMSP_del egati on
extension shall comprise the token. vh shall not propose any cipher suites of lower strength than those
observed in step 1 and should propose TL S cipher suites that are a subset (including the full set) of the TLMSP
cipher suites observed in step 1. vh should preserve the order of the cipher suites observed instep 1inits
dientHello.

If the server understands the TLMSP_del egat i on extension, the server shall include a verification token
(ver _t oken) after completion of the TLS handshake between Mh and the server. vh shall verify this
acknowledgement token using the verification token sent in step 5, as defined in clause C.2.3.

Ivh shall return a TLMSPDel egat e message comprising the acknowledgement token.

The client shall attempt to verify the acknowledgement token. If verification is successful, it shall close the
TLS session with the server.

If the server does not understand the TLMSP_del egat e extension/message, then the extension of message (7) will
not be present.

ETSI

85 ETSI TS 103 523-2 V1.2.1 (2022-03)

C.2.3 Message and processing details

C.2.3.1 TLMSP proxying and delegate extension and message
specifications

The TLMSP_pr oxyi ng extension shall have ext ensi on_t ype = 37, "O0x25" andtheext ensi on_data
shall consist of the handshake ID: Handshakel D hs_i d.

The TLMSP_del egat e extension (used in steps 6 and 7) shall have ext ensi on_t ype = 38, "0x26" and shal
have asext ensi on_dat a

Del egat eToken t oken;

where Del egat eToken isdefined as
struct {

Handshakel D hs_i d;

ui nt 8 token_| engt h;

opaque token_val ue[token_l ength];
} Del egat eToken;

The TLMSPDel egat e message (steps 5 and 8 in clause C.2.2) shall have the following format

struct {
Del egat eToken t oken;
} TLMSPDel egat e;

C.2.3.2 Delegate message specification

Thet oken_val ue of the token included in message (5,6) and ver _t oken of message (7,8) of clause C.2.2 shall be
generated as defined in Eq. 1 and Eq.2 in the present clause.

Letmast er _secret C Sbethe TLS master secret established between client and server. Then
ver _token = PRF(nmaster_secret _C S, "ver token", ServerCertificate)[0..31] (Eql)
and:
token = PRF(ver_token, "del egate token", ServerCertificate)[O0..31] (Eq2)
The value of t oken_I engt h is32. The PRF shall be the same as defined in clause 4.3.10 for the key derivations.

Thevalue Ser ver Cer ti fi cat e shall be taken from the original server's certificate message, binding thet oken
andver _t oken to the server.

C.2.3.3 Processing

When the server receives message (6) of clause C.2.2, assuming it understandsthe TLMSP_del egat e extension, the
server shall verify that the received t oken has been computed as defined in clause C.2.3.2 (Eg. 1 and Eq. 2). If thisis
the case, the server shall return ver _t oken computed asin clause C.2.3.2 (Eq. 1). If the server does not understand
the TLMSP_del egat e extension, no token will be present as defined in clause C.2.2, step 6, and even if atoken was
included, the server would ignoreit.

The middlebox Mh (acting as TLS server S') shall verify that thever _t oken received from the server, together with
thet oken received from the client, satisfies relation (Eq. 2) of clause C.2.3.2. If so, it shall return ver _t oken to the
client. The client shall then verify that ver _t oken satisfies (Eq. 1) of clause C.2.3.2 and if not, it shall close the
connection.

NOTE: This provesto the server that middlebox M is authorized by the client to act as a proxy. It also provesto
the client that the middlebox is connected to the correct server.

ETSI

86 ETSI TS 103 523-2 V1.2.1 (2022-03)

Thehs_i d fields of thet oken and TLMSP_del egat e extension may be used to associate a server with the
delegated session.

C.3 Middlebox security policy enforcement

C.3.1 General

A middlebox can enforce a security policy with respect to allowing connections to traverse it.

EXAMPLE: An enterprise gateway between an enterprise intranet and the rest of the Internet, protecting against
data leakage.

In such situations, it is undesirable to allow any traffic to pass the policy enforcement in the middliebox until the client
authenticity has been established. When the signalling flow of clause 4.3.1 (Figure 6) is used, the client authenticity is
not established with certainty by any middlebox until after the client has sent the Cl i ent Hel | o to the server. An
unverified insider could leak information to the server by embedding the information in various information elements of
thed i ent Hel | o.

To implement such policy enforcement, a verifiable handshake with the first middlebox shall be completed before
forwardingthe Cl i ent Hel | o to external network(s). This may be done by using the signalling flow in Figure C.3.

If the client proposes to use alternative (non certificate based) cipher suites according to annex B, it is still assumed that
the client also supports standard, certificate based methods, which is needed in the exchange with the first middlebox.

CLI ENT M DDLEBOX 1 . M DDLEBOX N SERVER
dientHel l o(TLMSP(ni _i))

/* cache ClientHell o nessage */
MboxAut hRequest

dientHel | o(TLMSP(ni i))
S

/* rest of TLMSP handshake as in Figure 6 */

NOTE: The symbols *, 0 and x are defined in the same way as in Figure 6.

Figure C.3: Handshake, alternative policy enforcement flow

On reception of the Cl i ent Hel | o at middlebox ML, ML responds with an Mbox Aut hRequest comprising a
signature over (parts of) the i ent Hel | o (including the nonce), thereby authenticating ML to the client. If the
signature verifies, and the client wishes to proceed, the client responds with an Moox Aut hResponse message, which
shall contain aclient certificate and a signature over ML's Moox Aut hRequest message. The certificate provided at
this point may differ from the certificate the client usesin later Handshak e messages. ML now verifies the signature.
If it fails, it shall respond with anaccess_deni ed aert and terminate the connection.

Otherwise, after the client has been authenticated, ML forwardsthe Cl i ent Hel | o and the protocol completesasin
Figure 6, except that when computing the verification messages as part of Fi ni shed and MboxFi ni shed, the
MooxAut hRequest and MboxAut hResponse messages shall both be omitted. If ML istransparent, it may not have
been included in the client's original middlebox list. In this case, middiebox ML may choose to not actually participatein
the to-be-established TLM SP session.

ETSI

87 ETSI TS 103 523-2 V1.2.1 (2022-03)

NOTE: The security policy determination is bound to the Cl i ent Hel | o based on the signatures included in the
two messages following the Cl i ent Hel | 0, and the correct forwarding of the Cl i ent Hel | o will
eventually be verified by the Fi ni shed messages (and thus the security policy decision is bound to the
Session).

Asnoted in clause 4.3.1, this flow could encounter problems which isto be considered before using it.

C.3.2 Message formats

The formats of shall be as follows:

struct {
Certificate nbox_cert;
CertificateRequest cr;
digitally-signed struct {
CertificateRequest cr;
ClientHello client_hello;
} verify;
} MooxAut hRequest ;

Thefieldmbox_cert isaCerti fi cat e message containing a middlebox certificate and the field cr isa
Certificat eRequest, where each shall follow the formats as defined in IETF RFC 5246 [1]. Thefieldveri fy
shall contain a signature made with respect to the public signing key of thembox_cert field, over the
Certificat eRequest being sent and thereceived O i ent Hel | o (with the value substitutions described in
clause 4.3.9.1 applied).

struct {
Certificate client_cert;
CertificateVerify ver;

} MooxAut hResponse;

The contents shall follow IETF RFC 5246 [1], with the signed payload of the ver field comprising a signature over the
received Moox Aut hRequest . The certificate included in cer t may be a different one from the one used in the later
Handshake messages.

NOTE: Thereareno entity IDsin the MooxAut hRequest and MooxAut hResponse messages. In
consideration of all of the possible scenarios, such identities do not seem to convey any generally useful
information. In particular, the middiebox ML implementing the security policy may be a transparent
middlebox that was not in the initial middiebox listinthe Cl i ent Hel | o (and thus would later invent its
own ID if it participated in the session), and further, could be a middlebox that may not actually include
itself to the TLM SP session. In such case the concept of entity ID is not meaningful.

ETSI

88 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex D (informative):
Contexts and application layer interaction

D.1 Application layer interaction model

Central to TLMSP principlesisthe ability to partition data from the application layer into contexts associated with
certain privileges, delegated to middleboxes. This requires an intelligent agent that can extract parts of the application
data for which delegated access rights are granted.

EXAMPLE 1: Inasimple cases, such as header vs payload distinctions, thisis straightforward and a generic
agent could be built into TLMSP.

In other cases, the situation is more complex and only the application itself would typically have sufficient knowledge
about the sensitivity of certain parts of the data. In this case, the agent would be built into the application itself, and thus
all such applications would need to be modified to make use of TLMSP.

The layered model in Figure D.1 could be used to allow support for TLMSP in awider range of applications (rather
than limited to naive context concepts such as in example 1) without applications needing to be re-written for TLMSP

usage.

Fom e e e +
| Application |
Fom e e e +
| SDhu
v
S +
| TCAL |
S . +

| (cl, f1), (c17, f2),

Figure D.1: TCAL concept

Here, aTLMSP Context Adaptation Layer (TCAL) is provided between the application and TLMSP. The principle of
operation of TCAL isto take the application layer SDUs, match them against a suitable context model, split according
to those contexts and deliver datato TLM SP as fragments, tagged by their context. On the receiving side, a mirrored
TCAL layer receives decrypted fragments from TLM SP together with a context identifier, and re-assembles these into
data readable by the application.

EXAMPLE 2: TCAL could use templates or plug-ins tailored to a specific application or a specific type of
applications.

D.2 Example context usage

How contexts are configured and used is out of scope of the present document, as to define contexts would require
knowledge of the application and use cases. However, some suggestions for how contexts can be used are given in the
present clause.

Different contexts could be associated with different, distinguishable parts of the data fragments generated by the
application.

ETSI

EXAMPLE 1:

EXAMPLE 2:

EXAMPLE 3:

89 ETSI TS 103 523-2 V1.2.1 (2022-03)

One context is associated with headers or metadata, and another context is associated with
payloads. Middlebox read access is granted to the headers and no accessis granted for payloads.
Thisisimplemented through two separate contexts. If write accessis granted to payloads, it is
write access would also be granted for the headers, as the length of messages could change as a
result of middlebox processing.

A highly trusted middlebox is allowed to insert application data into the server-client flow; another
middlebox in the connection only has (partial) read access. One context is alocated so that only
this highly trusted middlebox can perform insertions. Data inserted by the middliebox would be
recognized by the corresponding context identifier in the container headers.

A middlebox has access to the downstream server-client flow, but not to the upstream flow from
client to server. Two contexts are used: one for each direction. Generally, one middiebox is
granted read access to the upstream flow and another middlebox is granted write access to the
downstream flow.

ETSI

90 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex E (informative):
Security considerations

E.1 Trust model

During the development of TLMSP, alot of experience has been gained regarding the trust model and how different
assumptions on fair-play and honesty of both middleboxes and endpoints can lead to unanticipated security issues. The
present document reflects the summary of gained knowledge and the technical specification mitigates several attack
vectors that were not anticipated by the original mcTLS protocol, nor by earlier versions of TLMSP.

Middleboxes have many diverse applications and it is not possible to define a one-size-fits-all trust model, asit depends
on the use case.

The client and server trust each other not to attempt to include other entities beyond those middleboxes agreed in the
TLMSP handshake phase. Middleboxes cannot take part in the session without obtaining the required key material, and
said key material is provided in two halves, from each endpoint. Once the handshake is completed, both endpoints will
know the secret contribution provided by the other endpoint. At this point, no protection can be provided against an
endpoint attempting to share additional key material with additional entities after completion of the handshake. Thisis
true for al cryptographic protocols. the protocol itself cannot ensure that the endpoints do not leak the key material. On
the other hand, the TLMSPKey Conf mechanism of TLMSP can be used to prove the converse: that no middleboxes
have been omitted from gaining intended access to keys.

In general, client and server can have varying trust levels of each other. One foreseen use case of TLMSP isfor the
middlebox(es) to filter out unwanted or malicious content transmitted from the server, or, from the client (e.g. DoS
attacks against the server). TLMSP, as with al protocols, can provide cryptographic integrity and authentication of
content, but this does not guarantee that the content in general is safe, trustworthy, or correct. Indeed, when
middleboxes are provided by a trusted entity, such an enterprise or aMNO, trust assumptions can be moved from plural
untrusted entities on the Internet to a smaller number of trusted entities under the control of one's own organization.

Authorized parties, including middleboxes, are trusted to handle the access privilege level they have been granted (read,
delete, or write) to specific contexts. Thisis cryptographically assured through authentication, key management, and an
assumption that endpoints and middleboxes do not leak keys to other, unauthorized entities. Middleboxes with write
access can also perform insertions and deletions; it is assumed that middleboxes do not exploit this for malicious
purposes, such as denial of service or replay attacks, as they are under the control of atrusted entity. If a middlebox
exhibits such behaviour, using the hop-by-hop MAC could be used detect such attempts, as described in clause E.3.
This can limit the trust assumptions to only the last middliebox on path and will also allow detection of "cheating".

Parties are assumed to participate in the protocol fully; they do not drop out or refuse to forward messages passing
them. However, some measures are till taken to prevent certain types of "selective refusal” by middieboxes. One
middlebox could attempt to selectively refuse another middlebox its granted access rights by selectively choosing to not
forward TLMSPKeyMat er i al to that specific middliebox. Thiswould however in TLM SP be detected by the
TLMSPKey Conf and the MooxFi ni shed messages (though not revealing the identity of the refusing middlebox).

Another example of such refusal was discovered during the development of TLMSP. At a point in time, a separate
delete access right was included, that falls between basic read access and the full write privilege level. It was however
realized that this delete access right could, without consideration, imply that a dishonest middlebox with delete access to
some message could actually use this capability to unnoticeably delete other messages, even if the middlebox has no
access at all to those other messages. The same analysis would of course also have applied even if a separate delete
access right had not been introduced: a malicious writer middliebox could exercise the delete access right included as
part of its write privilege level to achieve the same effect. Thisisaform of privilege escalation attack which is more
severe than mere denial -of-service if the attack would be allowed to go unnoticed, and is described in more detail
(including mitigation) in clause F.3

Many middlebox solutions focus on the need for endpoints to trust middleboxes.

EXAMPLE 1: A mainfeature of TLMSP isto ensure endpoints can include and refuse specific middleboxes,
allowing endpoints to authorize the access for each middlebox.

ETSI

91 ETSI TS 103 523-2 V1.2.1 (2022-03)

A common theme in discussions is that the middleboxes are by default the only potential abusers to worry about. There
could, however, also be a need for middleboxes to trust and authorize the endpoints, and so authentication of the client
by the middleboxesis present but optional in TLMSP. When this option is not used, the trust model changes. It now
generally becomes necessary for middleboxes to trust the server fully. If the server is not fully trusted, the server could
be colluding with unauthorized and untrustworthy clients, allowing clients to benefit from middleboxes' services.
Omitting client-to-middlebox authentication is used only after careful consideration.

In most situations, it is not in the interest of endpoints to weaken the security on purpose, and attacks based on such
principles fall outside trust models that are typically relevant.

Cases exigt, such asin enterprise environments, where the endpoints only have one path, via middleboxes, and are
forced to either accept the middleboxes fully or to not communicate. In such cases, it could become attractive for
malicious endpoints to circumvent middleboxes, either by bypassing them or undoing effects of certain middleboxes.
Clause E.3 discusses one specific case when the server is malicious.

In general, both the server and client could collude maliciously to affect the cryptographic keys obtained by a
middlebox, resulting in incorrect or weak keys. In this case, the TLMSPKey Conf featureis not effective when both
endpoints are malicious.

EXAMPLE 2: Dueto the way that keys are cryptographically derived from the distributed key contributions, it
would be highly unlikely that an incorrect reader MAC key verifies the packets (that were
protected by a different key) as being valid; therefore such an attack islikely to be detected by
middleboxes.

NOTE: Itisalso highly unlikely that a middlebox has obtained an incorrect reader decryption key, while the
middlebox still isable to verify reader MACs (since MAC verification is done after decryption).

To mitigate risk of weak keys, the key derivation in TLM SP is modified compared to mcTLS [i.1] so that also
middleboxes contribute to the entropy of the keys. Observe however, that when both endpoints are malicious and
assumed to collude, they would be able to insert any data into the TLM SP connection without breaking any
cryptographic primitives. The MACs (in any form) do not help in this case, since the destination endpoint is assumed
malicious and will not care about the MAC value validity. In this extreme trust model, an extension of the TLMSP
protocol with third party (or publicly) verifiable audit records would be necessary, but is out of scope of the present
document.

E.2 Cryptographic primitives

E.2.1 General

In TLMSP, it isthe client and server that propose and select the cipher suite. In comparison to back-to-back proxy
approaches (selecting cipher suite per-hop) this has the great advantage that client and server remain in charge and
mitigates the risk that one hop uses a transform that the endpoint would normally not accept. To the extent possible,
TLM SP seeks to use the same cryptographic primitivesasin TLS. To avoid the risk of failed connections due to lack of
cipher suite support in one of the middlieboxes, a mandatory-to-support AES-GCM cipher suiteis defined, whichis
cryptographically equivalent to the TLS counterpart.

The PRF used for key derivation and the default HMAC_SHA?256 based primitive isthe sasme asused in IETF
RFC 5246 [1]. The inputs to the PRF are however different TLM SP due to the inclusion of thelist of the full set of
entity identities and random values. This binds the key material to a specific set of entities, and participatingin a
specific session, making it less probable that key material could be re-used in a future connection with different
middleboxes.

ETSI

92 ETSI TS 103 523-2 V1.2.1 (2022-03)

The pre-defined cipher suites of annex A are based on state-of-the-art cryptography (also used in TLS cipher suites), but
the IV formation has been changed to use partly explicit 1Vs. First, the nonce or cryptographically derived f i xed_| V
part of the IVsis expected to contain enough entropy to protect against time-memory trade-off attacks. Re-use of 1V
with the same key can compromise confidentiality, in particular for stream ciphers,[i.6]. To ensure IV-uniqueness for a
given key, all predefined transforms include both e _i d and the sequence number (the global, context-independent one)
inthelV. It isimpossible for these two values to both collide for two different messages since either e_i d will differ
(for different authors), or, the sequence numbers involved will be different (for two message units from the same
author). 1V reuse may also be catastrophic for the MAC in AEAD transforms. Note that the fixed part of the IV is
context-independent. When a middliebox modifies or inserts a message, due to the fact that both the middlebox local
sequence number and entity ID are also included inthe 1V, 1V collisions are avoided for containers associated with the
same context. The deleter and writer MACs can never re-use information from the IV of the reader MAC, and
moreover, the reader, deleter, and writer MAC keys are all different. Further, for containers belonging to different
contexts, their keys differ. The only case where the same key and 1V could be used for two different message unitsis
when generating the hop-by-hop MAC and/or when generating the writer MAC for an audit container or writer MAC
for an alert: in al these cases, the key used isindependent of the context, but unique to the (author,destination) entity
pair. Thus, the only case when the same key could be used for two (or more) of these MACsis therefore on the last hop,
from the last middlebox to the destination endpoint. Note that in this case, also the author may be the same for two
different message units, so the fact that the author entity ID is part of the IV does not ensure |V collision avoidance.
However, in this case, the IV of a hop-by-hop MAC and writer MAC can never be the same since the MAC-typeis
included in the IV. (Indeed, no two MACs of different type can ever have the same IV, since the MAC-typeisincluded
intheIV.) Therefore, the only remaining issueisif the IV of awriter MAC of an Al ert message could be the same as
the 1V of awriter MAC on an audit container (on the last hop). But again, thisisimpossible: the alert and audit
containers (even if associated with the same context) need be carried in two different containers, and thus the sequence
number part of the IV will differ by at least one.

MACsof TLMSPKeyMat eri al and TLMSPKeyConf i r mat i on messages do not depend on sequence numbers.
The messages occur only in one specific place of the handshake and there is only two messages of each of these types
occurring to/from a specific middliebox. First, a messages of one of these two types cannot be used to replay/replace a
message of the other type. Second, for a given type of message, there is only one message of that type in each direction,
and the MAC used in different directions will use different keys. Thus, replay/reordering is not an issue for these sets of

messages.

Thehbh_i d isnot integrity protected by any MAC. Modification of thehbh_i d will lead to the receiving entity
either failing to map it to avalid security context, or, mapping it to the wrong security context (associated with another
session or upstream entity). In both cases, verification of (at least) the hob-by-hop MAC will fail and the message unit
will be discarded.

Use of ephemeral (standardized) Diffie-Hellman cipher suites offers forward secrecy.

When using AEAD transforms, the computation of the reader MAC value isintegrated with the encryption.
Computation of other MAC values (deleter, writer, and hop-by-hop MAC values) uses a separate application of the
MAC-part of the AEAD as defined in annex A. As mentioned in annex A, this means that only AEAD transforms that
allow such separation can be used in TLMSP. Many AEADs require nonces, both when computing the combined
AEAD transform as well as when computing stand-alone MACs. These nonces are used only once for agiven key. In
TLMSP, the MA C-value computations all uses distinct keys, thus the same nonce can be used for all reader and writer
MAC values, as long as no two MAC-value computations of the same type use the same nonce. For each key, the
corresponding nonces are, for the pre-defined transform of clause A.2, formed by an exclusive-OR of a per-message
unique I V-part (the uniqueness following from the discussion above) with afixed, pseudo-random value derived from
the master key. The exclusive-OR preserves this per-message unginuess. Further, since the only real source of nonce-
entropy is cryptographically derived from the master key there is no threat that a malicious end-point could somehow
affect nonce reuse or nonce entropy.

TLM SP supports unauthenticated cipher suites, as well as cipher suites based on non-Diffie-Hellman key exchange
mechanisms and non-signature based authentication. However, instead of defining a complete set of additional cipher
suites for this purpose, TLM SP uses indicators in the Hello messages that determine whether "standard " or
"alternative" cipher suites are to be used.

ETSI

93 ETSI TS 103 523-2 V1.2.1 (2022-03)

E.2.2 Handshake verification

The verification of the handshake (the keyed hash in the Fi ni shed messages) is, compared to TLS, more complex as
not all entities share the same view of all the messages. Some information added by one middiebox could be
unavailableto all other middlieboxes. The verification has therefore been split in two stages: the first being an end-to-
end verification between server and client based on those message elements that are common in both endpoints. When
possible, information specific to the middleboxes is aso included to create a cryptographic binding between end-to-end
and middlebox specific information. Secondly, a set of pairwise MooxFi ni shed messages are exchanged to verify
parts of the handshake which uses local information, usually known only in one of the endpoints and one of the
middleboxes. While there are no pairwise verification messages between pairs of adjacent middleboxes, modifications
of such inter-middlebox Handshake messages (key exchange messages) will be detected at the latest when the first
protected Al ert or Appl i cat i on protocol message unit (of any context) passes the corresponding pair of adjacent
middleboxes: the hop-by-hop MAC will fail as a consequence of the middleboxes having derived different keys.

An explicit verification of the middleboxes reception of the key material contributionsis provided for the client,
whereas the server obtains an implicit verification viathe Fi ni shed message as defined in clause 4.3.9.

In addition to this, by modifying the Ser ver KeyExchange asdefined in clause 4.3.10.1 and changing the order of
Certificat eRequest and Ser ver KeyExchange, TLMSP protects the client against unauthorized harvesting of
its certificate(s) and also enables detection of 3™ party modifications to the middlebox lists as early as possible,
Modification of middlebox lists would still be detected even without these changes, but only at the end of the
handshake.

E.3 Protection against mcTLS attacks

The original mcTL S proposal suffers from a vulnerability by which a malicious endpoint, either the server or client, can
undo filtering operations performed by a middlebox [i.3].

EXAMPLE: A middlebox detecting malware content from a server could be ineffective at removing this
malware if the server can access the remaining path between middlebox and client and re-insert the
malware.

Thisis possible as the server generally has accessto al keys used by middleboxes to authenticate their
inbound/outbound containers. Similar issues exist also when considering two middleboxes with write privileges, where
one of them not is malicious. In fact, the problem in the original mcTLS protocol is bigger than just the problem with a
malicious server: any party, not even knowing a single cryptographic key, can copy an mcTLS message from one hop,
and inject them on another hop. None of the MACsin mcTLS (inclduing the endpoint MAC) can protect against such
attacks. Moreover, once a single modification has been done by any middiebox, the value of the endpoint MAC is
heavily reduced since nobody is able to tie the endpoint MAC to any specific change made by any specific entity.

A previous draft version of the present document used a so called forwarding MAC, computed by middleboxes using a
key known only to the middiebox and the downstream endpoint, aiming to thwart this attack. The problem with this (as
well as with the end-point MAC of the original mcTLS specification) is that at most the destination endpoint would be
able to verify such aMAC. Since no other middiebox knows the corresponding MAC key, there is no way for a
middlebox to distinguish TLM SP messages that are really coming from the upstream neighbour from messages that
have been copied from another hop, further upstream. Thus, such forwarding MACs do not prevent a middlebox from
forwarding messages that have not been seen and processed by all upstream enitities. The endpoint would be able to
verify the forwarding MAC, but only the forwarding MAC added in conjunction to the last modification to the message.
Thisis because any subsequent modification of a message destroys the cryptographic link to a MAC that was made on
an earlier version of the same message. Thus, any modification that was made further upstream, may be undone by a
reader or even any third party attacker (without any knowledge of keys), and will remain unverifiable, even to the
destination endpoint. Therefore, the forwarding MAC mechanism did not meet its intended purpose. Similarly,
deletions (e.g. of messages that contain malware), could be undone by any party.

TLMSP instead addresses this attack by requesting that middleboxes perform an additional local check on inbound
containers and that they also authenticate their outbound containers by a key only known to the next-hop endpoint, via
the hop-by-hop MAC. Through this approach, each receiving entity will be able to verify that it receives containers that
were unaltered from when they left the previous middliebox. The obtained end-to-end verification isimplicit: it implies
that each middlebox received and had opportunity to act on authenticated containers, but it does not prove that the
middlebox performed the "right" action. Thisisleft as an assumption of the trustworthiness of the middlebox.

ETSI

94 ETSI TS 103 523-2 V1.2.1 (2022-03)

For similar reasons, it is necessary for writer middleboxes to re-compute writer MAC values (using anew V), even
when they did not perform any modification. If not, areader or deleter middlebox could escalate its privilege to" undo"
modifications done by upstream writer middleboxesin asimilar way as described above. Likewise, deleter middleboxes
need to re-compute the deleter MAC on a container even if they choose not to delete it. Refer to clause F.3 for security
considerations on sequence number usage. TLM SP authors have noted one additional issue and one observation on the
security properties of the original mcTL S specification. The issue has to do with robustness and was a reason that led to
adding the feature of a hop-by-hop MAC, as described in clause F.4.

Another observation isthat mcTLS (and TLM SP) distributes key-shares to middleboxes before the handshake is
complete. In particular, this distribution occurs before the verification that the selected cipher suite is not subject to an
active downgrade attack. This could be argued as sub-optimal, but two arguments can be made in favour of not
addressing it:

1) Thisattack would be detected at the later completion of the handshake, which still happens before the keys
protected by the cipher suites are used.

2) If the handshake was modified, allowing complete verification of the selected cipher suite before distributing
key-shares, it would no longer be possible to bind those key-shares into the handshake verification.

Therefore, TLM SP authors leave this as an observation.

E.4 Inter-session assurance

Even if the original content stored in a cache was delivered via TLM SP and was thoroughly inspected by some
middliebox before it was stored, TLM SP does not propagate assurance information from one TLM SP session to another.
A different client that later downloads the cached content does not automatically obtain any assurance that the content
was previously inspected and is free of malware. Indeed, in a caching use case, later downloads of the same content
could use TLS instead of TLMSP. On the other hand, the audit mechanism of TLM SP could be used to provide
evidence that content is trustworthy. In this case, audit records would be constructed to be universally and publicly
verifiable.

E.5 Use of the default context zero

All entities have read and write access to context zero, motivated by a common need to read and/or insert messages into
this context. Thus context zero does not have the same separation of privileges as the other contexts. The present clause
analyses potential issues caused by this lack of privilege separation.

During the initial phases of the handshake (before ChangeCi pher Spec has been issued), context zero and all other
contexts are not protected in any way. Thisisidentical to the situation for TLS 1.2, except that in TLM SP, there is
further no usage of sequence numbers at this stage. When security has been activated, both endpoints and any
middlebox can generate (valid) messages with respect to context zero, but no third party to the connection can do so.
The only messages protected by context zero are Handshake messages sent after ChangeCi pher Spec and Al ert
messages related to context zero itself.

The aertsfor context zero are, in addition to the context zero reader/writer MAC-values, aso using hop-by-hop MAC
values of the originator and can therefore be authenticated as originating from a specific source (endpoint or
middlebox). Therefore, whether to trust and act upon the alert is purely an issue of whether the entity that generated the
alert can betrusted. Thisisidentical to the trust model required when using point-to-point TLS. (Recall that the trust
model of clause E.1 assumes that middleboxes follow the specification and do not drop aerts by other entities.)

A handshake exchange, whether protected by context zero keys or not at all, aways ends with a set of Fi ni shed
messages between each of the endpoints and the set of midddleboxes, authenticating the handshake exchanges by
pairwise keys (known only to two of the entities). Thisis therefore not dependent on the common, shared context zero
keys (though the context zero security further protects from third party eavesdroppers). Recall also that the most critical
part of the handshake, the transfer of (new) key material contributions to middleboxesis always protected
independently of the record layer (using pairwise keys) as defined in clause 4.3.7.

ETSI

95 ETSI TS 103 523-2 V1.2.1 (2022-03)

Finally, where ChangeCi pher Spec messages can occur in a handshake are only at the points of the handshake
defined in Figure 6. Such commands, if spoofed by middleboxes at other points, can be ignored without issue. The
message does not carry any information other than to activate the pending state. Additionally, this command is always
followed by a (set of) verification Fi ni shed message(s), using the pairwise keys.

E.6 Removal of middlebox insertions

TLMSP adds functionality for middleboxes to insert content that does not originate from an endpoint. Under the
assumption that the inserted content is there to improve security and/or improve the service experience, removal of such
insertions needs to be interpreted as an attack on the protocol.

EXAMPLE 1: A middlebox inserts cached content, avoiding need to repeatedely fetch the same content from a
server. When combined with the middiebox deletion feature, the middlebox replaces an outdated
or infected file with an updated one.

When this feature is used, it is intended to improve security and/or service delivery; therefore the impact of blocking
these insertions go beyond denial -of-service prevention. Just like normal TLS use, hothing can be done if an attacker is
able to drop packets.

EXAMPLE 2. In TLMSP, an attacker startsto drop packets as soon as the first insertion by a middiebox is done.
The attacker allows packet flow to resume as soon as the middlebox has done the last insertions.
TLMSP can not prevent this attack, but can help to detect it. Eventually, some additional packets
will be sent by the other endpoint or acl ose_not i f y message will be sent. When the
middlebox adds a hop-by-hop MAC value to this message, it will be done with a different
sequence number to that expected by the endpoint; therefore, verification of thisMAC value will
fail.

The general scenario behind Example 2 isin reality somewhat more complex if one considers aso the possibility that
the attacker could actually be another (malicious) middlebox who has been granted at least some level of privilege to
the data protected by the TLM SP session. Such a scenario is discussed in more detail clause F.3. It is however stressed
already here that TL M SP does provide protection also against attacks of this more advanced type.

E.7 Removal of support for renegotiation

TLMSP according to the present document does not support renegotiation due to potential threats to middlebox
operations that seem to require additional mechanisms to be handled securely.

During a renegotiation handshake, application data protected by a previously established cryptographic state could
possibly be interspersed with Handshak e messages associated with the renegotiation. This could defeat the function
of middleboxes: a middliebox cannot buffer Appl i cat i on protocol containers and let Handshake messages pass
them as that would break sequence number handling. Therefore, a middliebox could be forced to a make a decision to let
application protocol messages pass, while having been able to examine further application messages might have led the
middliebox to block the Appl i cat i on protocol messages. Further, letting Handshak e messages pass buffered
containers could lead to problems with buffered containers winding up getting delivered only to be processed with the
wrong cryptographic state. An attacker with control of an endpoint could attempt to bypass middiebox functionality this
way, by interspersing payload with Handshake messages as required to defeat the middlebox functionality. Even
without concern for such attacks, there isin general need for a cooperation mechanism between TLM SP and the
application layer protocol to avoid timing a renegotiate such that it can defeat middlebox functionality. Specification of
such a cooperation mechanism is however not in scope of the present document and therefore renegotiation is not
supported.

ETSI

96 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex F (informative):
TLMSP design rationale

F.1 General

This clause provides background material about design considerations when modifying mcTLSto produce the TLMSP
specification.

F.2 Containers

A driver for the original mcTLS protocol was to provide fine grained access control to an encrypted session; contexts
could be used to provide different levels of access control to different parts of the application data.

EXAMPLE: For website whitelisting/blacklisting, granting a middlebox access to HT TP headers without
granting access to the HTTP body.

To do this, the HTTP headers and HT TP body could belong to different contexts, protected by different keys. The
middlebox responsible for the whitelisting/blacklisting would only require access to the HTTP header context but not
the HTTP body context. Whilst the method by which an application chooses to split the data content across different
contexts/containersis not part of this protocol specification, this example does highlight some potentially undesirable
featuresin the original mcTLS design.

Thefirst isthat datain one context can relate to data in another context (HT TP headers and body are clearly related to
each other) and therefore a middlebox could need simultaneous access to data from more than one context to carry out
its function. It would be desirable to have these contexts delivered in one TLM SP record, even though they correspond
to different contexts. However mcTLS specified that the contexts be transmitted in separate records.

The second undesirable feature is related to another goal of TLM SP: to enable middleboxes to optimize traffic flow
under varying network conditions. To that end, direct cloning of the TLS record format, asis donein mcTLS[i.1],
would have drawbacks. Fragmentation could be done so that each TLM SP record contains data associated with
precisely one TLMSP context, according to a specific access policy for the middieboxes. Thus, use of contextsimpliesa
specific maximum fragment size; this size could be much smaller than the 16 kB maximum record size specified for
standard TLS, meaning datais transmitted in smaller chunks, even when larger chunks are preferred for network
performance.

It should be noted that endpoint congestion control techniques can be defeated by the presence of middleboxes, a
problem which exists in general with the use of middleboxes, and particularly with the terminate-and-reoriginate
approach. TLMSP explicitly adds middleboxes to the model but does not define or provide mechanisms to address
interworking with congestion control methods.

F.3 Sequence numbers and re-ordering/deletion attacks

A straight-forward adaptation of TLS sequence number handling does not work in a protocol which allows the
middleboxes to, independently of each other, delete or insert messages into the session.

EXAMPLE 1: Thereisachain of middleboxes entities, e[1], e[2], ..betweenclient C(identifiedase[0])
and server S (identified ase[n]). Assume an attacker can access and control the transport
network somewhere after middlebox e[j] .

Two middieboxes, e[i] ande[j],] < i,eachinsertamessagenii] andnij] attimes
T[i] and T[j] respectively, whereT[i] and T[j] are"close". At some point, nf i] and
ni j] will reach the point in the network where the attacker is present; the attacker can now
store/buffer m{ i] andnij] and forward them in any order it chooses without detection.

The example above shows that context-specific sequence numbers (alone) are insufficient, asthey only provide a
binding to the inter-message order for messages from different contexts. Thus a global sequence number is required.

ETSI

97 ETSI TS 103 523-2 V1.2.1 (2022-03)

On the other hand, a single global sequence number is also insufficient asillustrated by the following attack.

EXAMPLE 2: A middlebox entity, e, has delete access to contai ner associated with context ¢ 1. It has no access
whatsoever to context ¢ 2. It is then possible for e to drop (i.e. delete) containers associated with
context ¢ 2 and replace them with delete indications associated with context c1.

For entities located downstream from e in Example 2 above, the delete indications associated with context ¢ 1 will
make the total number of containers that have passed e appear to be consistent: the dropped containers from c 2 will not
be missed. It isonly if/when e startsto forward containers from c2 again that the attack will be detected due to
sequence number mismatch (and associated MAC failure). Arguably, the attack is non-persistent in this sense, but the
TLMSP design has nevertheless added a mechanism to mitigate this (and other) attacks.

Specifically, TLMSP counters this attack by:

a) using both global, context-independent sequence numbers as well as context-dependent sequence numbers;
and

b) usingthe global sequence numbers asinput to reader and hop-by-hop MAC; and
c) using the complete set of all context-dependent sequence numbers as inputsto all writer and deleter MACs.

Feature (a) isobviously a pre-requisite for features (b,c). By feature (c), then, the attack of Example 2 will immediately
be discovered as soon as the malicious entity e allows any container (of any context) to be forwarded. The discovery
will be made by the closest downstream entity who has at |east delete- or write access to the context of the forwarded
container. Thisisthe best protection possible to attain, as one cannot expect that a downstream middlebox with only
read access would be able to detect insider-attacks by middleboxes of higher privilege level. By feature (b), the attack of
Example 1 will be thwarted.

F.4 MAC for synchronization purposes

The mcTLS protocol [i.1] on which TLMSP is based does not specify the use of aMAC for synchronization purposes.
Thisis problematic for maintaining synchronization between entities in a connection and maintai ning sequence
numbers.

EXAMPLE: A middlebox Mhas neither read- nor write-access to a particular context, ¢. The endpoint sends a
record associated with context ¢, and the record is processed with sequence number s at that
endpoint. When this message passes M will Mincrease itslocal sequence number?

If Mdoes not, then when a context that Mhas access to is processed, the endpoint generating the
message will processit with a sequence number s+d. However, Mwill use sequence number
s- 1+d (or lower).

If Mdoes increase the sequence number to s, there isno way for Mto know if the message was
spoofed by an attacker since Mcannot verify the authenticity of the message. Mwill have increased
the sequence number so that it istoo high when alater, authentic container is accessed.

NOTE: Thisisaproblem also for the original mcTLS specification.

A potential solution to this would be to use independent, per-context sequence numbers. This would be a viable solution
for the mcTLS protocol which does not allow insertions or deletions, but as discussed in clause F.3, thisis not a
sufficient solution for TLM SP; it leaves open attacks related to re-ordering of containers. Thisis the reason for

introduci ng the hop-by-hop MAC which, besides preventing injection of messages from one indivudal hop to another,
also servesasa MAC for synchronization purposes that all middleboxes can verify.

F.5 Removal of support for renegotiation

Thisis motivated in detail in clause E.7.

ETSI

98 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex G (informative):
Mapping MSP desired capabilities to TLMSP

G.1 General

Following the framework of [i.5], the clauses below state which of the M SP Requirements that have been selected for
the TLM SP Profile defined in the present document and provides conformance claims how each of the requirements are
met. The column M SP/Profile Type contains information regarding the status of each requirement. The value before the
"/" dash denotes whether the Template Requirement is mandatory in all MSP profiles (MM) or whether it is optional to
certain profilesonly (MO), according to [i.5]. The value after the "/* denotes the status of the requirement in the
TLMSP profile defined in the present document and can have values Profile Mandatory (PM), Profile Optional (PO),
Profile Not-applicable (PNA), or Profile Rejected (PR).

EXAMPLE: The presence of "MO/PM" in the M SP/Profile Type column means that the requirement isin
general optional for MSP protocols, but is mandatory in the TLMSP profile. Obviously, any of the
combinations "MM/PQO", "MM/PNA" or "MM/PR" would be incompatible with claiming
conformanceto [i.5].

For the mandatory requirements and those optional requirements that have been selected for TLM SP, a conformance
claim with motivation is provided in the last column. For requirement that are profile non-applicable or have been
rejected, it isin the last column stated why rationale for why the requirement is not applicable or not included in
TLMSP.

ETSI

99

ETSI TS 103 523-2 V1.2.1 (2022-03)

G.2

MSP Requirements - Data Protection

The present clause defines the TLM SP Data Protection Requirements, based on the M SP Template Requirementsin clause 6.2 of [i.5].

Ref Data Protection Template Requirement MSP/Profile Type Conformance and Selection Analysis

E.DP.1 Endpoints shall protect confidentiality of sensitive data that they MM/PM Provided through selection of a cipher suite

send. with non-NULL encryption. The predefined
transform of annex A is mandatory to support.
(NULL encryption may be supported but
discouraged from usage.)

E.DP.2 Endpoints may add protection to externally visible characteristics MO/PR Requirement has been rejected due to the

of application data to protect confidentiality of sensitive excess overhead it would create.
information about application activity.
(This is commonly referred to as Traffic Analysis Protection.)

E.DP.3 Endpoints shall protect integrity of application data. MM/PM Generally provided through selection of a
cipher suite with non-NULL MAC. (NULL
integrity only allowed for testing.)

E.DP.3.1 |Endpoints shall protect application datagrams from modification in MM/PM Achieved by reader- and hop-by-hop MAC.

transit between authorized participants.

E.DP.3.2 |Endpoints may protect application datagrams from unauthorized MO/PM Achieved by assigning separate contexts to

modification by a middlebox. parts of data and use of separate deleter- and
writer MAC, as well as hop-by-hop MAC.

E.DP.3.3 |Endpoints may protect the datastream from modification in transit MO/PM See E.DP.3.1 (Due to hop-by-hop MACs, even

between authorized participants. an authorized middlebox can only modify data
when the data passes the middlebox itself.)

E.DP.3.4 |Endpoints may protect the datastream from unauthorized MO/PM See E.DP.3.2. In addition inclusion of

modification by a middlebox. sequence numbers in MACs

E.DP.4 Endpoints shall protect sensitive information about session state MM/PM Compliance via sub-requirement fulfilment as

from unauthorized disclosure, discovery, manipulation and below.
creation.

E.DP.4.1 |Endpoints shall protect the sensitive cryptographic state from MM/PM Left as an implementation assumption on

unauthorized disclosure, discovery, manipulation and creation. endpoints.

E.DP.4.2 |Endpoints may protect the application state from replay and pre- MO/PM Supported by the inclusion of sequence

play of data. numbers in MACs.
M.DP.1 Middleboxes shall protect confidentiality of sensitive data that they MM/PM Cipher suite selection is under control of
send. endpoints, middleboxes assumed to follow that
choice.
M.DP.2 Middleboxes may add protection to externally visible MO/PR See E.DP.2.
characteristics of application data to protect confidentiality of
sensitive information about application activity.
(This is commonly referred to as Traffic Analysis Protection.)

ETSI

100

ETSI TS 103 523-2 V1.2.1 (2022-03)

Ref Data Protection Template Requirement MSP/Profile Type Conformance and Selection Analysis
M.DP.3 Middleboxes shall protect integrity of application data. MM/PM Compliance via sub-requirement fulfilment as
below.
M.DP.3.1 |Middleboxes shall protect application datagrams from modification MM/PM Supported by reader-, writer-, deleter- and hop-
in transit between authorized patrticipants. by hop MACs.
M.DP.3.2 |Middleboxes may protect application datagrams from MO/PM Supported by assignment of data to different
unauthorized modification by a middlebox. context, and assumption that middleboxes do
not collude maliciously.
M.DP.3.3 |Middleboxes may protect the datastream from modification in MO/PM See M.DP.3.1. In addition inclusion of
transit between authorized participants. sequence numbers in MACs
M.DP.3.4 |Middleboxes may protect the datastream from unauthorized MO/PM See M.DP.3.2.
modification by a middlebox.
M.DP.4 Middleboxes shall protect sensitive information about session MM/PM Compliance via sub-requirement fulfilment as
state from unauthorized disclosure, discovery, manipulation and below.
creation.
M.DP.4.1 |Middleboxes shall protect the sensitive cryptographic state from MM/PM Left as an implementation assumption on
unauthorized disclosure, discovery, manipulation and creation. middleboxes.
M.DP.4.2 |Middleboxes may protect the application state from replay and MO/PM Supported by usage of sequence numbers in
pre-play of data. MACs.
M.DP.5 Middleboxes may protect against protocol data fields being used MO/PR Requirement has been reject since obtaining
as covert channels by validating the contents or otherwise. assurance that all forms of covert channels are
(This does not eliminate covert channels from externally visible avoided is deemed too difficult to verify. For
characteristics such as timings and sizes.) example, it is clear that information could be
leaked via spoofed Hello messages,
information embedded in certificates, etc.

G.3

MSP Requirements - Transparency

The present clause defines the TLM SP Transparency Requirements, based on the M SP Template Requirements defined in clause 6.3 of [i.5].

Ref

Transparency Template Requirement

MSP/Profile Type

Conformance and Selection Analysis

ET.1

Endpoints shall receive suitable knowledge of all middlebox
identities.

MM/PM

Information about identity and purpose of
middleboxes is available in middlebox
certificates and the mandatory middlebox list
extension. It is generally required to be able to
authenticate all middlebox identities. If one
endpoint proposes that a middlebox ought not
to present certificate to the other endpoint, it is
at the discretion of the other endpoint whether
to accept this.

ET.1.1

Both endpoints shall receive suitable knowledge about the
identity of all middleboxes authorized.

MM/PM

In addition to E.T.1, an authorized middlebox
needs to obtain key material from both
endpoints in order to gain access.

ETSI

101 ETSI TS 103 523-2 V1.2.1 (2022-03)
Ref Transparency Template Requirement MSP/Profile Type Conformance and Selection Analysis

E.T.1.2 Endpoints may receive knowledge about the identity of all MO/PM Rejected middleboxes (including dynamically
refused middleboxes. inserted ones) are available in the middlebox

list extension.

E.T.1.3 Endpoints shall be able to verify or otherwise confirm that they MM/PM Middlebox list extension included in verification
have the same knowledge as the peer endpoint of all hash at end of handshake and explicit signalling
middleboxes' identities that are authorized. verifies that middleboxes have been given

access to key material.

E.T.2 Endpoints shall receive knowledge of all middlebox permissions MM/PM Endpoints choose both cipher suite and define
and knowledge of all security mechanisms for data protection. and grant access rights on a per context basis.

E.T.3 Each endpoint shall be able to verify or otherwise confirm that MM/PM Verification as stated in E.T.1.3.
they have the same knowledge (of middlebox permissions and
security mechanisms for data protection) as the other endpoint.

ET.4 Endpoints may receive knowledge of the peer endpoint identity. MO/PO Compliance via sub-requirement fulfilment as

below.

ET.4.1 The initiator endpoint may authenticate or otherwise verify the MO/PO Server authentication is strongly recommended.
identity of the responder endpoint.

E.T.4.2 The responder endpoint may authenticate or otherwise verify MO/PO Client authentication is optional but
the identity of the initiator endpoint. recommended.

E.T.5 Endpoints may verifiably audit activity of middleboxes. MO/PO Compliance via sub-requirement fulfilment as

below.

E.T.5.1 The destination endpoint may verifiably audit the activity of MO/PO Endpoints have option to configure middleboxes
middleboxes. to send special audit containers, only verifiable

between a specific middlebox and destination
endpoint.

ET.51.1 The destination endpoint may verify that data has transited and MO/PM Under the assumption that middleboxes follow
not bypassed each middlebox. the protocol, this is supported by per-entity

sequence numbers in MACs and hop-by-hop
MACs.

E.T.5.1.2 The destination endpoint may verify whether a middlebox has MO/PO Supported by optional use of audit containers.
modified data.

E.T.5.1.3 The destination endpoint may verify the full change history of MO/PO Supported if all middleboxes are requested to
received data. send audit containers.

E.T.5.2 The sending endpoint may verifiably audit the activity of MO/PR Would require feedback signalling channel.
middleboxes.

ET.5.21 The sending endpoint may verify that data has transited and not MO/PR See E-T.5.2
bypassed each middlebox.

E.T.5.2.2 The sending endpoint may verify whether a middlebox has MO/PR See E.T.5.2
modified data.

E.T.5.2.3 The sending endpoint may verify the full change history of MO/PR See E.T.5.2
received data.

E.T.6 Endpoints may verify or otherwise confirm that middlebox MO/PM Supported by key confirmation messages.

access and middlebox permissions have been granted or
denied.

ETSI

102 ETSI TS 103 523-2 V1.2.1 (2022-03)
Ref Transparency Template Requirement MSP/Profile Type Conformance and Selection Analysis
M.T.1 Middleboxes may receive knowledge of all middlebox identities. MO/PO Middleboxes would normally be able to verify
other middleboxes' signatures as part of the
handshake. However, some middlebox could be
requested by an endpoint to not supply a
certificate.

M.T.1.1 Middleboxes may receive knowledge about the identity of all MO/PO See M.T.1
middleboxes authorized.

M.T.1.2 Middleboxes may receive knowledge about the identity of all MO/PM This is supported by the middlebox list
refused middleboxes. extension which passes all middleboxes.

M.T.1.3 Middleboxes may be able to verify or otherwise confirm that they MO/PO Supported by verification at end of handshake.
have the same knowledge as other participants of all The inter-middlebox verifications are obtained
middleboxes' identities that are authorized. as the application datagrams start to flow

(through hop-by-hop MACs).

M.T.2 Middleboxes may receive knowledge of all middlebox MO/PO Cipher suite selection available to all
permissions and knowledge of all security mechanisms for data middleboxes. There is an exception for
protection. middleboxes' signature algorithms in case one

endpoint requests a middlebox to not provide a
certificate to downstream entities.

M.T.3 Middleboxes may be able to verify or otherwise confirm that they MO/PM See M.T.1.3.
have the same knowledge (of middlebox permissions and
security mechanisms for data protection) as the other
participants.

M.T.4 Middleboxes may receive knowledge of either or both endpoint MO/PO Compliance via sub-requirement fulfilment as
identities. below.

M.T.4.1 Middleboxes may receive knowledge about the identity of the MO/PO Server authentication is strongly recommended.
responder endpoint.

M.T.4.2 Middleboxes may receive knowledge about the identity of the MO/PO Client authentication optional.
initiator endpoint.

M.T.5 Middleboxes may verifiably audit activity of other middleboxes. MO/PR Deemed in general to be too costly.

M.T.5.1 Middleboxes may verifiably audit activity of other participants on MO/PR See M.T.5.
received data.

M.T.5.1.1 Middleboxes may verify that received data has transited and not MO/PNA Supported for upstream middleboxes due to
bypassed each middlebox. usage of sequence numbers and hop-by-hop

MACSs, but not generally applicable due to lack
of feedback channel for downstream entities.

M.T.5.1.2 Middleboxes may verify whether another middlebox has MO/PR See M.T.5.
modified received data

M.T.5.1.3 Middleboxes may verify the full change history of received data. MO/PR See M.T.5.

M.T.5.2 Middleboxes may verifiably audit activity of other participants on MO/PR See M.T.5.

sent data.

ETSI

103

ETSI TS 103 523-2 V1.2.1 (2022-03)

Ref Transparency Template Requirement MSP/Profile Type Conformance and Selection Analysis
M.T.5.2.1 Middleboxes may verify that sent data has transited and not MO/PNA See M.T.5.1.1
bypassed each middlebox.
M.T.5.2.2 Middleboxes may verify whether another middlebox has MO/PR See M.T.5.
modified sent data.
M.T.5.2.3 Middleboxes may verify the full change history of sent data. MO/PR See M.T.5.

G.4

MSP Requirements - Access Control

The present clause defines the TLM SP Access Control Requirements, based on the M SP Template Requirements defined in clause 6.4 of [i.5].

Ref Access Control Template Requirement MSP/Profile Type Conformance and Selection Analysis

E.AC.1 Only endpoints shall grant or deny middlebox access and MM/PM Assignment of contexts and key material in
middlebox permissions. control of and defined by endpoints.

E.AC.1.1 Middlebox access shall be granted by at least one endpoint. MM/PM See E.AC.1.

E.AC.1.2 Middlebox permissions shall be granted by the same endpoint or MM/PM Both endpoints involved to define per-context
endpoints that granted access. access rights.

E.AC.1.3 The profile may support multiple levels for middlebox MM/PM Read, delete, and write/modify/insert supported.
permissions.

E.AC.1.4 Endpoints may authorize middlebox permissions per context. MM/PM Access rights assigned per context.

E.AC.1.5 Only endpoints shall deny middlebox access or middlebox MM/PM Only an endpoint has possibility to reject access
permissions. rights proposed by other endpoint.

(A middlebox, such as a cyber defence gateway, can still block
the entire connection between suspected malicious endpoints.)

E.AC.2 The endpoint(s) that grant(s) access to a middlebox shall MM/PM Either explicit authentication of each middlebox
authenticate or otherwise confirm its identity before granting or, if acceptable, relies on trust in that the other
access. endpoint authenticates middlebox (to "otherwise

confirm" is understood to rely on trust in other
endpoint's authentication).

E.AC.3 At least one endpoint shall choose all security mechanisms for MM/PM Endpoints negotiate cipher suites.
data protection.

E.AC.4 Endpoints may grant middlebox access and middlebox MO/PM Middlebox list extension includes permissions.
permissions only through mutual agreement with the peer The whole list is mutually agreed.
endpoint.

E.AC.5 Endpoints may authenticate or otherwise verify the identity of all MO/PM See E.AC.2 and E.AC4
middleboxes whose access is granted by the other endpoint.

ETSI

104

ETSI TS 103 523-2 V1.2.1 (2022-03)

Ref Access Control Template Requirement MSP/Profile Type Conformance and Selection Analysis
M.AC.1 Middleboxes shall authenticate or otherwise confirm any MM/PM At the transport layer, and after the session is
participant identity they use for an identity-dependent action. This established, the only applicable identity
action is not granting or denying access to an MSP connection, dependent action is to ensure to only accept
which shall fall within endpoint remit only (E.AC.1). receiving datagrams from the upstream
(This stops a middlebox unlocking access to data or services for neighbour (via hop-by-hop MAC) and to only
an identity that has not been checked by the middlebox.) forward to the downstream neighbour.
Generally, middleboxes cannot take identity
dependent actions since they cannot in general
verify which entity that was the most recent to
modify/insert data. Considering identity-
dependent actions related to the application
layer, context mappings can be used to allow
only certain entities to modify the content, which
makes actions identifiable at the granularity of
the group of entities sharing the same access
rights. Moreover, the middlebox can tell if a
participant is authenticated and could fulfil the
requirement, assuming the middlebox interface
supports combined access to both application
layer information and MSP layer information.
M.AC.2 Middleboxes may authenticate or otherwise confirm participant MO/PO Authentication is not mandatory. In general, not
identities. desired that all middleboxes would always
confirm all other middleboxes' identities.
M.AC.2.1 Middleboxes may authenticate or otherwise confirm the initiator MO/PO See M.T.4.2
endpoint identity
M.AC.2.2 Middleboxes may authenticate or otherwise confirm the MO/PO See M.T.4.1
responder endpoint identity
M.AC.2.3 Middleboxes may authenticate or otherwise confirm all middlebox MO/PO In general, not desired that all middleboxes
identities would always confirm all other middleboxes'
identities. It is however supported in case all
middleboxes provide certificates.
M.AC.3 A middlebox may know that its access has been withheld. MO/PM Can be determined from middlebox list and/or

(Meeting this requirement implies it is not possible to deceive a
middlebox into believing it has access.)

lack of received key material message.

ETSI

105

ETSI TS 103 523-2 V1.2.1 (2022-03)

G.5

MSP Requirements - Good Citizen

The present clause defines the TLM SP Good Citizen Requirements, based on the M SP Template Requirements defined in clause 6.5 of [i.5].

Ref Good Citizen Template Requirement MSP/Profile Type Conformance and Selection Analysis

E.GC.1 Resource attacks that use an endpoint action or request shall have MM/PM During handshake, an endpoint may
some attribution to the attacker. request/propose that one or more other

middleboxes take part in the session, but
participation is decided by the proposed
middlebox. After handshake, middleboxes (with
appropriate access rights) can distinguish
message units originating from the end point
from inserted message units and decide how to
handle them. Attacks to other entities
participating in the same TLMSP session are
further attributed via the hop-by-hop MAC.
However, pure DoS attacks using malformed
packets (with incorrect MACs) cannot be
attributed to a source.

E.GC.1.1 |Any party being asked to expend significant resource due to an MM/PM Supported if client authentication is enforced
endpoint request, shall have some attribution of the request to the (server authentication is as discussed strongly
endpoint. recommended).

E.GC.2 An MSP profile shall not provide a significant amplification factor MM/PM No sources of amplification have been
for a resource attack that uses an endpoint action or request. identified.

E.GC.2.1 |Where an endpoint sends MSP protocol messages that request a MM/PM No sources of amplification have been
significant amplification factor on resource expenditure, then one of identified.
the following two things shall happen: either the recipient is not
forced to accept the request or the requesting endpoint expends
commensurately amplified resource as a consumer of the result.

M.GC.1 Resource attacks that uses an endpoint action or request shall MM/PM See E.GC.1.
have some attribution to the attacker.

M.GC.1.1 |Any party being asked to expend significant resource due to a MM/PM Middleboxes cannot request resources from
middlebox request, shall have some attribution of the request to the other entities and cannot effect which type of
middlebox. processing that is needed at other entities. A

middlebox can however request another
middlebox to take part in the session, but
participation is decided by the other middlebox.

M.GC.2 An MSP profile shall not provide a significant amplification factor MM/PM See E.GC.1.
for a resource attack that uses an endpoint action or request.

M.GC.2.1 |Where a middlebox sends MSP protocol messages that request a MM/PM A middlebox that was requested to join a
significant amplification factor on resource expenditure, then one of session by another middlebox can decline to do
the following two things shall happen: either the recipient is not So.
forced to accept the request or the requesting middlebox expends
commensurately amplified resource as a consumer of the result.

ETSI

106 ETSI TS 103 523-2 V1.2.1 (2022-03)
Ref Good Citizen Template Requirement MSP/Profile Type Conformance and Selection Analysis
M.GC.3 Middleboxes may be able to drop out of a connection, without MO/PO There is possibility to use the middlebox leave

breaking or degrading the connection for other participants, to
counter an attempted resource attack.

protocol for this purpose.

ETSI

107 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex H (informative):
TLMSP compression issues

The current version of TLMSP does not support compression. If afuture version of TLMSP isto support compression
along the lines of TLS, a number of considerations need to be taken into account.

First, it can be noted that TLS compressed datais allowed to be 1 024 bytes greater than the uncompressed text and this
could run into TLM SP container-length field limitations. Also, in TLS, plaintext is segmented into records, then
compressed, with the limitation that the compressed data for each record isitself sent in asingle record, and thisis again
allowed to grow up to 1 024 bytes.

If aTLMSP middiebox wants to edit data (insert/modify/del ete), one faces the problems of breaking back-references
and missing dictionary symbol redefinitions, so when modification is done, one also has to recompress the entire
remainder of data for that context.

Finally, compression was removed in the recent TLS 1.3 update [i.8] because consensus was that compression belongs

closer to the application layer, where relevant context can be taken into account to avoid/mitigate compression-based
vulnerabilities.

ETSI

108 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex | (informative):
IANA considerations

The TLMSP protocol has by IANA been assigned three values for new TLS extension typesfromthe"TLS
ExtensionType Values' registry defined in IETF RFC 8446 [i.8] and IETF RFC 8447 [i.9]. They are TLMSP (36),
TLSMP_proxying (37), and TLMSP_delegate (38). See clauses 4.3.5 and C.2.3 for more information.

ETSI

109 ETSI TS 103 523-2 V1.2.1 (2022-03)

Annex J:

Change History

Date

Version

Information about changes

01 2022

vl1.2.1

Essential functional corrections:

— Fixed problems related to hbh_id and its conflicts with the "Leave"
protocol. This includes fixing size of hbh_id to 32 bits, possibility to use
distinct hbh_id in the two directions and not MAC:ing the hbh_id (security
analysis of this added in Annex E). The leaving mbox remains on path, but
only to translate hbh_id values.

— Added a necessary hbh_id field to the ServerUnsupport message, and
added that message to diagrams of clause B.1 and clause B.2.

— A second ClientHello is needed also when only transparent middleboxes
are discovered.

Removed functionality:

— Removed sequence number from input to MAC of KeyMaterialContribution
and KeyConfirmation messages. Sequence numbers usage now start
exactly after ChangeCipherSpec and always start at 0. (Security analysis
of this is added in Annex E)

Clarifications:

— Clarified meaning of "cipher_suite_options = standard" to resolve possible
conflicts with "use_certificate” option.

— Clarified distinction between "IV" and "explicit IV" in serval places.

Updated t| nmsp_versi on from"1.0"to "1.1", clause 4.3.5.

Changed master secret derivation to include all the "random" values from all

entities see clause 4.3.10.3. Added corresponding rationale in Annex E.2.1.

Other changes:

— Multiplexing is only used between middleboxes and the server (see
4.2.2.1.2) to prevent ambiguous parsing of TLMSP headers.

- In4.2.2.3.1 and 4.3.5, clarified context numbering.

— In 4.3.5, added that server sets TLS cipher wuites to "NULL", if it accepts
to use TLMSP.

— Removed remaining traces of "ServerKeyExchange" which was earlier
removed from usage.

— In 4.3.9.5 clarified use of hash in TLMSPServerKeyExchange.

— In4.3.6.8, clarified use of hbh_id.

— Fig C.1, changed TLMSPAl ert (cl ose_notify)* to
TLSAl ert (cl ose_notify) and associ ated correction of
text.

Clarifications on PRF / hash functions, mainly in Annex A.

ETSI

110

ETSI TS 103 523-2 V1.2.1 (2022-03)

History

Document history
V111 February 2021 Publication
V121 March 2022 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 TLMSP specification
	4.1 Introduction
	4.2 The Record protocol
	4.2.1 Overview
	4.2.1.1 General
	4.2.1.2 Records, containers and contexts
	4.2.1.3 Record and container construction and processing overview

	4.2.2 Message unit and record processing: cryptographic state and synchronization
	4.2.2.1 General
	4.2.2.1.1 Session and cryptographic state identification
	4.2.2.1.2 TLMSP session multiplexing
	4.2.2.2 MAC overview
	4.2.2.2.1 General
	4.2.2.2.2 MAC author determination

	4.2.2.3 Sequence numbers
	4.2.2.3.1 General
	4.2.2.3.2 Outgoing message units and records
	4.2.2.3.3 Incoming message units and records

	4.2.3 Processing of specific message unit types
	4.2.3.1 Container message units
	4.2.3.1.1 Container usage
	4.2.3.1.2 Modifications
	4.2.3.1.3 Insertions generally
	4.2.3.1.4 Deletion indication containers
	4.2.3.1.5 Audit containers
	4.2.3.1.6 Alert containers

	4.2.3.2 Record message units
	4.2.3.2.1 Handshake message units
	4.2.3.2.2 ChangeCipherSpec message units

	4.2.3.3 Middlebox processing summary
	4.2.3.4 MAC usage summary

	4.2.4 Container format
	4.2.5 Plaintext record format
	4.2.6 Compressed record format
	4.2.7 Applying message unit and record protection
	4.2.7.1 General
	4.2.7.2 MAC generation
	4.2.7.2.1 General
	4.2.7.2.2 Reader, deleter and writer MACs
	4.2.7.2.3 Hop-by-hop MAC

	4.2.7.3 Cipher suite specifics
	4.2.7.3.1 General
	4.2.7.3.2 Null or stream cipher
	4.2.7.3.3 Generic block cipher
	4.2.7.3.4 AEAD ciphers

	4.3 The Handshake protocol
	4.3.1 Overview
	4.3.1.1 General
	4.3.1.2 Piggy-backing of handshake messages

	4.3.2 Middlebox configuration, discovery
	4.3.2.1 General
	4.3.2.2 Static pre-configuration
	4.3.2.3 Dynamic discovery
	4.3.2.3.1 General
	4.3.2.3.2 Non-transparent middleboxes
	4.3.2.3.3 Transparent middleboxes

	4.3.2.4 Combined discovery
	4.3.2.4.1 Example use case
	4.3.2.4.2 Practical considerations

	4.3.2.5 Middlebox leave and suspend

	4.3.3 Session resumption and renegotiation
	4.3.3.1 Resumption
	4.3.3.2 Renegotiation

	4.3.4 Handshake message types
	4.3.5 TLMSP Handshake extensions
	4.3.6 Middlebox related messages
	4.3.6.1 MboxHello
	4.3.6.2 MboxCertificate
	4.3.6.3 MboxCertificateRequest
	4.3.6.4 Certificate2Mbox
	4.3.6.5 MboxKeyExchange
	4.3.6.6 MboxHelloDone
	4.3.6.7 CertificateVerify2Mbox
	4.3.6.8 ServerUnsupport
	4.3.6.9 NewMboxSessionTicket
	4.3.6.10 MboxFinished

	4.3.7 TLMSPKeyMaterial and TLMSPKeyConf
	4.3.7.1 KeyMaterialContribution
	4.3.7.2 TLMSPKeyMaterial
	4.3.7.3 TLMSPKeyConf

	4.3.8 MboxLeaveNotify and MboxLeaveAck
	4.3.8.1 Message format
	4.3.8.2 Message processing
	4.3.8.2.1 General
	4.3.8.2.2 Detailed operation

	4.3.9 Message hashes
	4.3.9.1 ClientHello and ServerHello value substitutions
	4.3.9.2 Finished hash
	4.3.9.3 MboxFinished hash
	4.3.9.4 ClientHello hash (following dynamic discovery)
	4.3.9.5 TLMSPServerKeyExchange hash

	4.3.10 Key generation
	4.3.10.1 TLMSPServerKeyExchange
	4.3.10.2 General
	4.3.10.3 Premaster secret and master secret generation
	4.3.10.4 Pairwise encryption and integrity key generation
	4.3.10.5 Context specific keys
	4.3.10.6 Key extraction

	4.4 The Alert protocol
	4.4.1 General
	4.4.2 Alert message types

	4.5 The ChangeCipherSpec protocol

	Annex A (normative): Defined cipher suites
	A.1 General
	A.2 Key Exchange
	A.3 AES_{128,256}_GCM_SHA{256,384}
	A.3.1 General
	A.3.2 Additional MAC computations

	A.4 AES_{128,256}_CBC_SHA{256,384}
	A.5 AES_{128,256}_CTR_SHA{256,384}
	A.6 Additional cipher suites
	A.7 Summary of security parameters
	A.8 Cipher suite identifiers
	A.9 Future extensions

	Annex B (normative): Alternative cipher suites
	B.1 General
	B.2 Defined alternative cipher suites
	B.2.1 Anon
	B.2.2 Preshared keys
	B.2.2.1 General
	B.2.2.2 Technical Details
	B.2.2.2.1 ClientHello and ServerHello
	B.2.2.2.2 MboxKeyExchange
	B.2.2.2.3 TLMSPKeyMaterial

	B.2.3 GBA
	B.2.3.1 General
	B.2.3.2 Technical details
	B.2.3.2.1 General
	B.2.3.2.2 ClientHello
	B.2.3.2.3 MboxKeyExchange
	B.2.3.2.4 TLMSPKeyMaterial

	Annex C (normative): TLMSP alternative modes
	C.1 Fallback to TLS 1.2
	C.2 Fallback to TLMSP-proxying
	C.2.1 General
	C.2.2 Fallback procedure
	C.2.3 Message and processing details
	C.2.3.1 TLMSP proxying and delegate extension and message specifications
	C.2.3.2 Delegate message specification
	C.2.3.3 Processing

	C.3 Middlebox security policy enforcement
	C.3.1 General
	C.3.2 Message formats

	Annex D (informative): Contexts and application layer interaction
	D.1 Application layer interaction model
	D.2 Example context usage

	Annex E (informative): Security considerations
	E.1 Trust model
	E.2 Cryptographic primitives
	E.2.1 General
	E.2.2 Handshake verification

	E.3 Protection against mcTLS attacks
	E.4 Inter-session assurance
	E.5 Use of the default context zero
	E.6 Removal of middlebox insertions
	E.7 Removal of support for renegotiation

	Annex F (informative): TLMSP design rationale
	F.1 General
	F.2 Containers
	F.3 Sequence numbers and re-ordering/deletion attacks
	F.4 MAC for synchronization purposes
	F.5 Removal of support for renegotiation

	Annex G (informative): Mapping MSP desired capabilities to TLMSP
	G.1 General
	G.2 MSP Requirements - Data Protection
	G.3 MSP Requirements - Transparency
	G.4 MSP Requirements - Access Control
	G.5 MSP Requirements - Good Citizen

	Annex H (informative): TLMSP compression issues
	Annex I (informative): IANA considerations
	Annex J: Change History
	History

